| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opprlidlabs | Structured version Visualization version GIF version | ||
| Description: The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| oppreqg.o | ⊢ 𝑂 = (oppr‘𝑅) |
| oppr2idl.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| opprlidlabs | ⊢ (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 2 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 3 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (oppr‘𝑂) = (oppr‘𝑂) | |
| 4 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (.r‘(oppr‘𝑂)) = (.r‘(oppr‘𝑂)) | |
| 5 | 1, 2, 3, 4 | opprmul 20264 | . . . . . . . . . . 11 ⊢ (𝑥(.r‘(oppr‘𝑂))𝑎) = (𝑎(.r‘𝑂)𝑥) |
| 6 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2731 | . . . . . . . . . . . 12 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 8 | oppreqg.o | . . . . . . . . . . . 12 ⊢ 𝑂 = (oppr‘𝑅) | |
| 9 | 6, 7, 8, 2 | opprmul 20264 | . . . . . . . . . . 11 ⊢ (𝑎(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑎) |
| 10 | 5, 9 | eqtr2i 2755 | . . . . . . . . . 10 ⊢ (𝑥(.r‘𝑅)𝑎) = (𝑥(.r‘(oppr‘𝑂))𝑎) |
| 11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ 𝑖) ∧ 𝑏 ∈ 𝑖) → (𝑥(.r‘𝑅)𝑎) = (𝑥(.r‘(oppr‘𝑂))𝑎)) |
| 12 | 11 | oveq1d 7367 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ 𝑖) ∧ 𝑏 ∈ 𝑖) → ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) = ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏)) |
| 13 | 12 | eleq1d 2816 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ 𝑖) ∧ 𝑏 ∈ 𝑖) → (((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖 ↔ ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 14 | 13 | ralbidva 3153 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ 𝑖) → (∀𝑏 ∈ 𝑖 ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏 ∈ 𝑖 ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 15 | 14 | anasss 466 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑖)) → (∀𝑏 ∈ 𝑖 ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏 ∈ 𝑖 ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 16 | 15 | 2ralbidva 3194 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 17 | 16 | 3anbi3d 1444 | . . 3 ⊢ (𝜑 → ((𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖))) |
| 18 | eqid 2731 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 19 | eqid 2731 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 20 | 18, 6, 19, 7 | islidl 21158 | . . 3 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 21 | eqid 2731 | . . . 4 ⊢ (LIdeal‘(oppr‘𝑂)) = (LIdeal‘(oppr‘𝑂)) | |
| 22 | 8, 6 | opprbas 20267 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 23 | 3, 22 | opprbas 20267 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑂)) |
| 24 | 8, 19 | oppradd 20268 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑂) |
| 25 | 3, 24 | oppradd 20268 | . . . 4 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑂)) |
| 26 | 21, 23, 25, 4 | islidl 21158 | . . 3 ⊢ (𝑖 ∈ (LIdeal‘(oppr‘𝑂)) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 27 | 17, 20, 26 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) ↔ 𝑖 ∈ (LIdeal‘(oppr‘𝑂)))) |
| 28 | 27 | eqrdv 2729 | 1 ⊢ (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ≠ wne 2928 ∀wral 3047 ⊆ wss 3897 ∅c0 4282 ‘cfv 6487 (class class class)co 7352 Basecbs 17126 +gcplusg 17167 .rcmulr 17168 Ringcrg 20157 opprcoppr 20260 LIdealclidl 21149 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-ip 17185 df-oppr 20261 df-lss 20871 df-sra 21113 df-rgmod 21114 df-lidl 21151 |
| This theorem is referenced by: oppr2idl 33458 opprmxidlabs 33459 |
| Copyright terms: Public domain | W3C validator |