| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > opprlidlabs | Structured version Visualization version GIF version | ||
| Description: The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025.) |
| Ref | Expression |
|---|---|
| oppreqg.o | ⊢ 𝑂 = (oppr‘𝑅) |
| oppr2idl.2 | ⊢ (𝜑 → 𝑅 ∈ Ring) |
| Ref | Expression |
|---|---|
| opprlidlabs | ⊢ (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (Base‘𝑂) = (Base‘𝑂) | |
| 2 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (.r‘𝑂) = (.r‘𝑂) | |
| 3 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (oppr‘𝑂) = (oppr‘𝑂) | |
| 4 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (.r‘(oppr‘𝑂)) = (.r‘(oppr‘𝑂)) | |
| 5 | 1, 2, 3, 4 | opprmul 20249 | . . . . . . . . . . 11 ⊢ (𝑥(.r‘(oppr‘𝑂))𝑎) = (𝑎(.r‘𝑂)𝑥) |
| 6 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 7 | eqid 2729 | . . . . . . . . . . . 12 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 8 | oppreqg.o | . . . . . . . . . . . 12 ⊢ 𝑂 = (oppr‘𝑅) | |
| 9 | 6, 7, 8, 2 | opprmul 20249 | . . . . . . . . . . 11 ⊢ (𝑎(.r‘𝑂)𝑥) = (𝑥(.r‘𝑅)𝑎) |
| 10 | 5, 9 | eqtr2i 2753 | . . . . . . . . . 10 ⊢ (𝑥(.r‘𝑅)𝑎) = (𝑥(.r‘(oppr‘𝑂))𝑎) |
| 11 | 10 | a1i 11 | . . . . . . . . 9 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ 𝑖) ∧ 𝑏 ∈ 𝑖) → (𝑥(.r‘𝑅)𝑎) = (𝑥(.r‘(oppr‘𝑂))𝑎)) |
| 12 | 11 | oveq1d 7402 | . . . . . . . 8 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ 𝑖) ∧ 𝑏 ∈ 𝑖) → ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) = ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏)) |
| 13 | 12 | eleq1d 2813 | . . . . . . 7 ⊢ ((((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ 𝑖) ∧ 𝑏 ∈ 𝑖) → (((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖 ↔ ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 14 | 13 | ralbidva 3154 | . . . . . 6 ⊢ (((𝜑 ∧ 𝑥 ∈ (Base‘𝑅)) ∧ 𝑎 ∈ 𝑖) → (∀𝑏 ∈ 𝑖 ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏 ∈ 𝑖 ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 15 | 14 | anasss 466 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎 ∈ 𝑖)) → (∀𝑏 ∈ 𝑖 ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏 ∈ 𝑖 ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 16 | 15 | 2ralbidva 3199 | . . . 4 ⊢ (𝜑 → (∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 17 | 16 | 3anbi3d 1444 | . . 3 ⊢ (𝜑 → ((𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖))) |
| 18 | eqid 2729 | . . . 4 ⊢ (LIdeal‘𝑅) = (LIdeal‘𝑅) | |
| 19 | eqid 2729 | . . . 4 ⊢ (+g‘𝑅) = (+g‘𝑅) | |
| 20 | 18, 6, 19, 7 | islidl 21125 | . . 3 ⊢ (𝑖 ∈ (LIdeal‘𝑅) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘𝑅)𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 21 | eqid 2729 | . . . 4 ⊢ (LIdeal‘(oppr‘𝑂)) = (LIdeal‘(oppr‘𝑂)) | |
| 22 | 8, 6 | opprbas 20252 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑂) |
| 23 | 3, 22 | opprbas 20252 | . . . 4 ⊢ (Base‘𝑅) = (Base‘(oppr‘𝑂)) |
| 24 | 8, 19 | oppradd 20253 | . . . . 5 ⊢ (+g‘𝑅) = (+g‘𝑂) |
| 25 | 3, 24 | oppradd 20253 | . . . 4 ⊢ (+g‘𝑅) = (+g‘(oppr‘𝑂)) |
| 26 | 21, 23, 25, 4 | islidl 21125 | . . 3 ⊢ (𝑖 ∈ (LIdeal‘(oppr‘𝑂)) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎 ∈ 𝑖 ∀𝑏 ∈ 𝑖 ((𝑥(.r‘(oppr‘𝑂))𝑎)(+g‘𝑅)𝑏) ∈ 𝑖)) |
| 27 | 17, 20, 26 | 3bitr4g 314 | . 2 ⊢ (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) ↔ 𝑖 ∈ (LIdeal‘(oppr‘𝑂)))) |
| 28 | 27 | eqrdv 2727 | 1 ⊢ (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr‘𝑂))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ⊆ wss 3914 ∅c0 4296 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 +gcplusg 17220 .rcmulr 17221 Ringcrg 20142 opprcoppr 20245 LIdealclidl 21116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-2nd 7969 df-tpos 8205 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-3 12250 df-4 12251 df-5 12252 df-6 12253 df-7 12254 df-8 12255 df-sets 17134 df-slot 17152 df-ndx 17164 df-base 17180 df-ress 17201 df-plusg 17233 df-mulr 17234 df-sca 17236 df-vsca 17237 df-ip 17238 df-oppr 20246 df-lss 20838 df-sra 21080 df-rgmod 21081 df-lidl 21118 |
| This theorem is referenced by: oppr2idl 33457 opprmxidlabs 33458 |
| Copyright terms: Public domain | W3C validator |