Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprlidlabs Structured version   Visualization version   GIF version

Theorem opprlidlabs 33456
Description: The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
oppreqg.o 𝑂 = (oppr𝑅)
oppr2idl.2 (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
opprlidlabs (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))

Proof of Theorem opprlidlabs
Dummy variables 𝑥 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑂) = (Base‘𝑂)
2 eqid 2729 . . . . . . . . . . . 12 (.r𝑂) = (.r𝑂)
3 eqid 2729 . . . . . . . . . . . 12 (oppr𝑂) = (oppr𝑂)
4 eqid 2729 . . . . . . . . . . . 12 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
51, 2, 3, 4opprmul 20249 . . . . . . . . . . 11 (𝑥(.r‘(oppr𝑂))𝑎) = (𝑎(.r𝑂)𝑥)
6 eqid 2729 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2729 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
8 oppreqg.o . . . . . . . . . . . 12 𝑂 = (oppr𝑅)
96, 7, 8, 2opprmul 20249 . . . . . . . . . . 11 (𝑎(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑎)
105, 9eqtr2i 2753 . . . . . . . . . 10 (𝑥(.r𝑅)𝑎) = (𝑥(.r‘(oppr𝑂))𝑎)
1110a1i 11 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → (𝑥(.r𝑅)𝑎) = (𝑥(.r‘(oppr𝑂))𝑎))
1211oveq1d 7402 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏))
1312eleq1d 2813 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → (((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
1413ralbidva 3154 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) → (∀𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
1514anasss 466 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑖)) → (∀𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
16152ralbidva 3199 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
17163anbi3d 1444 . . 3 (𝜑 → ((𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖)))
18 eqid 2729 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
19 eqid 2729 . . . 4 (+g𝑅) = (+g𝑅)
2018, 6, 19, 7islidl 21125 . . 3 (𝑖 ∈ (LIdeal‘𝑅) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖))
21 eqid 2729 . . . 4 (LIdeal‘(oppr𝑂)) = (LIdeal‘(oppr𝑂))
228, 6opprbas 20252 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
233, 22opprbas 20252 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑂))
248, 19oppradd 20253 . . . . 5 (+g𝑅) = (+g𝑂)
253, 24oppradd 20253 . . . 4 (+g𝑅) = (+g‘(oppr𝑂))
2621, 23, 25, 4islidl 21125 . . 3 (𝑖 ∈ (LIdeal‘(oppr𝑂)) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
2717, 20, 263bitr4g 314 . 2 (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) ↔ 𝑖 ∈ (LIdeal‘(oppr𝑂))))
2827eqrdv 2727 1 (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  wral 3044  wss 3914  c0 4296  cfv 6511  (class class class)co 7387  Basecbs 17179  +gcplusg 17220  .rcmulr 17221  Ringcrg 20142  opprcoppr 20245  LIdealclidl 21116
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-tpos 8205  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-sca 17236  df-vsca 17237  df-ip 17238  df-oppr 20246  df-lss 20838  df-sra 21080  df-rgmod 21081  df-lidl 21118
This theorem is referenced by:  oppr2idl  33457  opprmxidlabs  33458
  Copyright terms: Public domain W3C validator