Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprlidlabs Structured version   Visualization version   GIF version

Theorem opprlidlabs 32509
Description: The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
oppreqg.o 𝑂 = (oppr𝑅)
oppr2idl.2 (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
opprlidlabs (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))

Proof of Theorem opprlidlabs
Dummy variables 𝑥 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . . . . . . . . 12 (Base‘𝑂) = (Base‘𝑂)
2 eqid 2732 . . . . . . . . . . . 12 (.r𝑂) = (.r𝑂)
3 eqid 2732 . . . . . . . . . . . 12 (oppr𝑂) = (oppr𝑂)
4 eqid 2732 . . . . . . . . . . . 12 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
51, 2, 3, 4opprmul 20107 . . . . . . . . . . 11 (𝑥(.r‘(oppr𝑂))𝑎) = (𝑎(.r𝑂)𝑥)
6 eqid 2732 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2732 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
8 oppreqg.o . . . . . . . . . . . 12 𝑂 = (oppr𝑅)
96, 7, 8, 2opprmul 20107 . . . . . . . . . . 11 (𝑎(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑎)
105, 9eqtr2i 2761 . . . . . . . . . 10 (𝑥(.r𝑅)𝑎) = (𝑥(.r‘(oppr𝑂))𝑎)
1110a1i 11 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → (𝑥(.r𝑅)𝑎) = (𝑥(.r‘(oppr𝑂))𝑎))
1211oveq1d 7409 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏))
1312eleq1d 2818 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → (((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
1413ralbidva 3175 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) → (∀𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
1514anasss 467 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑖)) → (∀𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
16152ralbidva 3216 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
17163anbi3d 1442 . . 3 (𝜑 → ((𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖)))
18 eqid 2732 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
19 eqid 2732 . . . 4 (+g𝑅) = (+g𝑅)
2018, 6, 19, 7islidl 20784 . . 3 (𝑖 ∈ (LIdeal‘𝑅) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖))
21 eqid 2732 . . . 4 (LIdeal‘(oppr𝑂)) = (LIdeal‘(oppr𝑂))
228, 6opprbas 20111 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
233, 22opprbas 20111 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑂))
248, 19oppradd 20113 . . . . 5 (+g𝑅) = (+g𝑂)
253, 24oppradd 20113 . . . 4 (+g𝑅) = (+g‘(oppr𝑂))
2621, 23, 25, 4islidl 20784 . . 3 (𝑖 ∈ (LIdeal‘(oppr𝑂)) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
2717, 20, 263bitr4g 313 . 2 (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) ↔ 𝑖 ∈ (LIdeal‘(oppr𝑂))))
2827eqrdv 2730 1 (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  wss 3945  c0 4319  cfv 6533  (class class class)co 7394  Basecbs 17128  +gcplusg 17181  .rcmulr 17182  Ringcrg 20016  opprcoppr 20103  LIdealclidl 20734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-om 7840  df-2nd 7960  df-tpos 8195  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-er 8688  df-en 8925  df-dom 8926  df-sdom 8927  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-nn 12197  df-2 12259  df-3 12260  df-4 12261  df-5 12262  df-6 12263  df-7 12264  df-8 12265  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17129  df-ress 17158  df-plusg 17194  df-mulr 17195  df-sca 17197  df-vsca 17198  df-ip 17199  df-oppr 20104  df-lss 20494  df-sra 20736  df-rgmod 20737  df-lidl 20738
This theorem is referenced by:  oppr2idl  32510  opprmxidlabs  32511
  Copyright terms: Public domain W3C validator