Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprlidlabs Structured version   Visualization version   GIF version

Theorem opprlidlabs 33457
Description: The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
oppreqg.o 𝑂 = (oppr𝑅)
oppr2idl.2 (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
opprlidlabs (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))

Proof of Theorem opprlidlabs
Dummy variables 𝑥 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑂) = (Base‘𝑂)
2 eqid 2731 . . . . . . . . . . . 12 (.r𝑂) = (.r𝑂)
3 eqid 2731 . . . . . . . . . . . 12 (oppr𝑂) = (oppr𝑂)
4 eqid 2731 . . . . . . . . . . . 12 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
51, 2, 3, 4opprmul 20264 . . . . . . . . . . 11 (𝑥(.r‘(oppr𝑂))𝑎) = (𝑎(.r𝑂)𝑥)
6 eqid 2731 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2731 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
8 oppreqg.o . . . . . . . . . . . 12 𝑂 = (oppr𝑅)
96, 7, 8, 2opprmul 20264 . . . . . . . . . . 11 (𝑎(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑎)
105, 9eqtr2i 2755 . . . . . . . . . 10 (𝑥(.r𝑅)𝑎) = (𝑥(.r‘(oppr𝑂))𝑎)
1110a1i 11 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → (𝑥(.r𝑅)𝑎) = (𝑥(.r‘(oppr𝑂))𝑎))
1211oveq1d 7367 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏))
1312eleq1d 2816 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → (((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
1413ralbidva 3153 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) → (∀𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
1514anasss 466 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑖)) → (∀𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
16152ralbidva 3194 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
17163anbi3d 1444 . . 3 (𝜑 → ((𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖)))
18 eqid 2731 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
19 eqid 2731 . . . 4 (+g𝑅) = (+g𝑅)
2018, 6, 19, 7islidl 21158 . . 3 (𝑖 ∈ (LIdeal‘𝑅) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖))
21 eqid 2731 . . . 4 (LIdeal‘(oppr𝑂)) = (LIdeal‘(oppr𝑂))
228, 6opprbas 20267 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
233, 22opprbas 20267 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑂))
248, 19oppradd 20268 . . . . 5 (+g𝑅) = (+g𝑂)
253, 24oppradd 20268 . . . 4 (+g𝑅) = (+g‘(oppr𝑂))
2621, 23, 25, 4islidl 21158 . . 3 (𝑖 ∈ (LIdeal‘(oppr𝑂)) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
2717, 20, 263bitr4g 314 . 2 (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) ↔ 𝑖 ∈ (LIdeal‘(oppr𝑂))))
2827eqrdv 2729 1 (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1541  wcel 2111  wne 2928  wral 3047  wss 3897  c0 4282  cfv 6487  (class class class)co 7352  Basecbs 17126  +gcplusg 17167  .rcmulr 17168  Ringcrg 20157  opprcoppr 20260  LIdealclidl 21149
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5219  ax-sep 5236  ax-nul 5246  ax-pow 5305  ax-pr 5372  ax-un 7674  ax-cnex 11068  ax-resscn 11069  ax-1cn 11070  ax-icn 11071  ax-addcl 11072  ax-addrcl 11073  ax-mulcl 11074  ax-mulrcl 11075  ax-mulcom 11076  ax-addass 11077  ax-mulass 11078  ax-distr 11079  ax-i2m1 11080  ax-1ne0 11081  ax-1rid 11082  ax-rnegex 11083  ax-rrecex 11084  ax-cnre 11085  ax-pre-lttri 11086  ax-pre-lttrn 11087  ax-pre-ltadd 11088  ax-pre-mulgt0 11089
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4283  df-if 4475  df-pw 4551  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-iun 4943  df-br 5094  df-opab 5156  df-mpt 5175  df-tr 5201  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6254  df-ord 6315  df-on 6316  df-lim 6317  df-suc 6318  df-iota 6443  df-fun 6489  df-fn 6490  df-f 6491  df-f1 6492  df-fo 6493  df-f1o 6494  df-fv 6495  df-riota 7309  df-ov 7355  df-oprab 7356  df-mpo 7357  df-om 7803  df-2nd 7928  df-tpos 8162  df-frecs 8217  df-wrecs 8248  df-recs 8297  df-rdg 8335  df-er 8628  df-en 8876  df-dom 8877  df-sdom 8878  df-pnf 11154  df-mnf 11155  df-xr 11156  df-ltxr 11157  df-le 11158  df-sub 11352  df-neg 11353  df-nn 12132  df-2 12194  df-3 12195  df-4 12196  df-5 12197  df-6 12198  df-7 12199  df-8 12200  df-sets 17081  df-slot 17099  df-ndx 17111  df-base 17127  df-ress 17148  df-plusg 17180  df-mulr 17181  df-sca 17183  df-vsca 17184  df-ip 17185  df-oppr 20261  df-lss 20871  df-sra 21113  df-rgmod 21114  df-lidl 21151
This theorem is referenced by:  oppr2idl  33458  opprmxidlabs  33459
  Copyright terms: Public domain W3C validator