Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  opprlidlabs Structured version   Visualization version   GIF version

Theorem opprlidlabs 33493
Description: The ideals of the opposite ring's opposite ring are the ideals of the original ring. (Contributed by Thierry Arnoux, 9-Mar-2025.)
Hypotheses
Ref Expression
oppreqg.o 𝑂 = (oppr𝑅)
oppr2idl.2 (𝜑𝑅 ∈ Ring)
Assertion
Ref Expression
opprlidlabs (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))

Proof of Theorem opprlidlabs
Dummy variables 𝑥 𝑎 𝑏 𝑖 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑂) = (Base‘𝑂)
2 eqid 2735 . . . . . . . . . . . 12 (.r𝑂) = (.r𝑂)
3 eqid 2735 . . . . . . . . . . . 12 (oppr𝑂) = (oppr𝑂)
4 eqid 2735 . . . . . . . . . . . 12 (.r‘(oppr𝑂)) = (.r‘(oppr𝑂))
51, 2, 3, 4opprmul 20354 . . . . . . . . . . 11 (𝑥(.r‘(oppr𝑂))𝑎) = (𝑎(.r𝑂)𝑥)
6 eqid 2735 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
7 eqid 2735 . . . . . . . . . . . 12 (.r𝑅) = (.r𝑅)
8 oppreqg.o . . . . . . . . . . . 12 𝑂 = (oppr𝑅)
96, 7, 8, 2opprmul 20354 . . . . . . . . . . 11 (𝑎(.r𝑂)𝑥) = (𝑥(.r𝑅)𝑎)
105, 9eqtr2i 2764 . . . . . . . . . 10 (𝑥(.r𝑅)𝑎) = (𝑥(.r‘(oppr𝑂))𝑎)
1110a1i 11 . . . . . . . . 9 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → (𝑥(.r𝑅)𝑎) = (𝑥(.r‘(oppr𝑂))𝑎))
1211oveq1d 7446 . . . . . . . 8 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) = ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏))
1312eleq1d 2824 . . . . . . 7 ((((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) ∧ 𝑏𝑖) → (((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
1413ralbidva 3174 . . . . . 6 (((𝜑𝑥 ∈ (Base‘𝑅)) ∧ 𝑎𝑖) → (∀𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
1514anasss 466 . . . . 5 ((𝜑 ∧ (𝑥 ∈ (Base‘𝑅) ∧ 𝑎𝑖)) → (∀𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
16152ralbidva 3217 . . . 4 (𝜑 → (∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖 ↔ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
17163anbi3d 1441 . . 3 (𝜑 → ((𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖)))
18 eqid 2735 . . . 4 (LIdeal‘𝑅) = (LIdeal‘𝑅)
19 eqid 2735 . . . 4 (+g𝑅) = (+g𝑅)
2018, 6, 19, 7islidl 21243 . . 3 (𝑖 ∈ (LIdeal‘𝑅) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r𝑅)𝑎)(+g𝑅)𝑏) ∈ 𝑖))
21 eqid 2735 . . . 4 (LIdeal‘(oppr𝑂)) = (LIdeal‘(oppr𝑂))
228, 6opprbas 20358 . . . . 5 (Base‘𝑅) = (Base‘𝑂)
233, 22opprbas 20358 . . . 4 (Base‘𝑅) = (Base‘(oppr𝑂))
248, 19oppradd 20360 . . . . 5 (+g𝑅) = (+g𝑂)
253, 24oppradd 20360 . . . 4 (+g𝑅) = (+g‘(oppr𝑂))
2621, 23, 25, 4islidl 21243 . . 3 (𝑖 ∈ (LIdeal‘(oppr𝑂)) ↔ (𝑖 ⊆ (Base‘𝑅) ∧ 𝑖 ≠ ∅ ∧ ∀𝑥 ∈ (Base‘𝑅)∀𝑎𝑖𝑏𝑖 ((𝑥(.r‘(oppr𝑂))𝑎)(+g𝑅)𝑏) ∈ 𝑖))
2717, 20, 263bitr4g 314 . 2 (𝜑 → (𝑖 ∈ (LIdeal‘𝑅) ↔ 𝑖 ∈ (LIdeal‘(oppr𝑂))))
2827eqrdv 2733 1 (𝜑 → (LIdeal‘𝑅) = (LIdeal‘(oppr𝑂)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1537  wcel 2106  wne 2938  wral 3059  wss 3963  c0 4339  cfv 6563  (class class class)co 7431  Basecbs 17245  +gcplusg 17298  .rcmulr 17299  Ringcrg 20251  opprcoppr 20350  LIdealclidl 21234
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-op 4638  df-uni 4913  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-2nd 8014  df-tpos 8250  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-er 8744  df-en 8985  df-dom 8986  df-sdom 8987  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-oppr 20351  df-lss 20948  df-sra 21190  df-rgmod 21191  df-lidl 21236
This theorem is referenced by:  oppr2idl  33494  opprmxidlabs  33495
  Copyright terms: Public domain W3C validator