Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3b Structured version   Visualization version   GIF version

Theorem isbnd3b 35680
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
isbnd3b (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑀   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isbnd3b
StepHypRef Expression
1 isbnd3 35679 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
2 metf 23228 . . . . . . 7 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
32adantr 484 . . . . . 6 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
4 ffn 6545 . . . . . 6 (𝑀:(𝑋 × 𝑋)⟶ℝ → 𝑀 Fn (𝑋 × 𝑋))
5 ffnov 7337 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥)))
65baib 539 . . . . . 6 (𝑀 Fn (𝑋 × 𝑋) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥)))
73, 4, 63syl 18 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥)))
8 0red 10836 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → 0 ∈ ℝ)
9 simplr 769 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → 𝑥 ∈ ℝ)
10 metcl 23230 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
11103expb 1122 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
1211adantlr 715 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
13 metge0 23243 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → 0 ≤ (𝑦𝑀𝑧))
14133expb 1122 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑦𝑀𝑧))
1514adantlr 715 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑦𝑀𝑧))
16 elicc2 13000 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
17 df-3an 1091 . . . . . . . . 9 (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥) ↔ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧)) ∧ (𝑦𝑀𝑧) ≤ 𝑥))
1816, 17bitrdi 290 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧)) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
1918baibd 543 . . . . . . 7 (((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧))) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (𝑦𝑀𝑧) ≤ 𝑥))
208, 9, 12, 15, 19syl22anc 839 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (𝑦𝑀𝑧) ≤ 𝑥))
21202ralbidva 3119 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
227, 21bitrd 282 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
2322rexbidva 3215 . . 3 (𝑀 ∈ (Met‘𝑋) → (∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
2423pm5.32i 578 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
251, 24bitri 278 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 209  wa 399  w3a 1089  wcel 2110  wral 3061  wrex 3062   class class class wbr 5053   × cxp 5549   Fn wfn 6375  wf 6376  cfv 6380  (class class class)co 7213  cr 10728  0cc0 10729  cle 10868  [,]cicc 12938  Metcmet 20349  Bndcbnd 35662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-1st 7761  df-2nd 7762  df-er 8391  df-ec 8393  df-map 8510  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-2 11893  df-rp 12587  df-xneg 12704  df-xadd 12705  df-xmul 12706  df-icc 12942  df-psmet 20355  df-xmet 20356  df-met 20357  df-bl 20358  df-bnd 35674
This theorem is referenced by:  equivbnd  35685  iccbnd  35735
  Copyright terms: Public domain W3C validator