Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isbnd3b | Structured version Visualization version GIF version |
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
isbnd3b | ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbnd3 35942 | . 2 ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) | |
2 | metf 23483 | . . . . . . 7 ⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) | |
3 | 2 | adantr 481 | . . . . . 6 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶ℝ) |
4 | ffn 6600 | . . . . . 6 ⊢ (𝑀:(𝑋 × 𝑋)⟶ℝ → 𝑀 Fn (𝑋 × 𝑋)) | |
5 | ffnov 7401 | . . . . . . 7 ⊢ (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥))) | |
6 | 5 | baib 536 | . . . . . 6 ⊢ (𝑀 Fn (𝑋 × 𝑋) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥))) |
7 | 3, 4, 6 | 3syl 18 | . . . . 5 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥))) |
8 | 0red 10978 | . . . . . . 7 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ∈ ℝ) | |
9 | simplr 766 | . . . . . . 7 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ ℝ) | |
10 | metcl 23485 | . . . . . . . . 9 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ ℝ) | |
11 | 10 | 3expb 1119 | . . . . . . . 8 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑧) ∈ ℝ) |
12 | 11 | adantlr 712 | . . . . . . 7 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑧) ∈ ℝ) |
13 | metge0 23498 | . . . . . . . . 9 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → 0 ≤ (𝑦𝑀𝑧)) | |
14 | 13 | 3expb 1119 | . . . . . . . 8 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑦𝑀𝑧)) |
15 | 14 | adantlr 712 | . . . . . . 7 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑦𝑀𝑧)) |
16 | elicc2 13144 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) | |
17 | df-3an 1088 | . . . . . . . . 9 ⊢ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥) ↔ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧)) ∧ (𝑦𝑀𝑧) ≤ 𝑥)) | |
18 | 16, 17 | bitrdi 287 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧)) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
19 | 18 | baibd 540 | . . . . . . 7 ⊢ (((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧))) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (𝑦𝑀𝑧) ≤ 𝑥)) |
20 | 8, 9, 12, 15, 19 | syl22anc 836 | . . . . . 6 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (𝑦𝑀𝑧) ≤ 𝑥)) |
21 | 20 | 2ralbidva 3128 | . . . . 5 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
22 | 7, 21 | bitrd 278 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
23 | 22 | rexbidva 3225 | . . 3 ⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
24 | 23 | pm5.32i 575 | . 2 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
25 | 1, 24 | bitri 274 | 1 ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 205 ∧ wa 396 ∧ w3a 1086 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 class class class wbr 5074 × cxp 5587 Fn wfn 6428 ⟶wf 6429 ‘cfv 6433 (class class class)co 7275 ℝcr 10870 0cc0 10871 ≤ cle 11010 [,]cicc 13082 Metcmet 20583 Bndcbnd 35925 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-iun 4926 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-po 5503 df-so 5504 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-1st 7831 df-2nd 7832 df-er 8498 df-ec 8500 df-map 8617 df-en 8734 df-dom 8735 df-sdom 8736 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-div 11633 df-2 12036 df-rp 12731 df-xneg 12848 df-xadd 12849 df-xmul 12850 df-icc 13086 df-psmet 20589 df-xmet 20590 df-met 20591 df-bl 20592 df-bnd 35937 |
This theorem is referenced by: equivbnd 35948 iccbnd 35998 |
Copyright terms: Public domain | W3C validator |