![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isbnd3b | Structured version Visualization version GIF version |
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 22-Sep-2015.) |
Ref | Expression |
---|---|
isbnd3b | ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | isbnd3 37744 | . 2 ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥))) | |
2 | metf 24361 | . . . . . . 7 ⊢ (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ) | |
3 | 2 | adantr 480 | . . . . . 6 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶ℝ) |
4 | ffn 6747 | . . . . . 6 ⊢ (𝑀:(𝑋 × 𝑋)⟶ℝ → 𝑀 Fn (𝑋 × 𝑋)) | |
5 | ffnov 7576 | . . . . . . 7 ⊢ (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥))) | |
6 | 5 | baib 535 | . . . . . 6 ⊢ (𝑀 Fn (𝑋 × 𝑋) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥))) |
7 | 3, 4, 6 | 3syl 18 | . . . . 5 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥))) |
8 | 0red 11293 | . . . . . . 7 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ∈ ℝ) | |
9 | simplr 768 | . . . . . . 7 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 𝑥 ∈ ℝ) | |
10 | metcl 24363 | . . . . . . . . 9 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → (𝑦𝑀𝑧) ∈ ℝ) | |
11 | 10 | 3expb 1120 | . . . . . . . 8 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑧) ∈ ℝ) |
12 | 11 | adantlr 714 | . . . . . . 7 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → (𝑦𝑀𝑧) ∈ ℝ) |
13 | metge0 24376 | . . . . . . . . 9 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋) → 0 ≤ (𝑦𝑀𝑧)) | |
14 | 13 | 3expb 1120 | . . . . . . . 8 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑦𝑀𝑧)) |
15 | 14 | adantlr 714 | . . . . . . 7 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → 0 ≤ (𝑦𝑀𝑧)) |
16 | elicc2 13472 | . . . . . . . . 9 ⊢ ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) | |
17 | df-3an 1089 | . . . . . . . . 9 ⊢ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥) ↔ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧)) ∧ (𝑦𝑀𝑧) ≤ 𝑥)) | |
18 | 16, 17 | bitrdi 287 | . . . . . . . 8 ⊢ ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧)) ∧ (𝑦𝑀𝑧) ≤ 𝑥))) |
19 | 18 | baibd 539 | . . . . . . 7 ⊢ (((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧))) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (𝑦𝑀𝑧) ≤ 𝑥)) |
20 | 8, 9, 12, 15, 19 | syl22anc 838 | . . . . . 6 ⊢ (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦 ∈ 𝑋 ∧ 𝑧 ∈ 𝑋)) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (𝑦𝑀𝑧) ≤ 𝑥)) |
21 | 20 | 2ralbidva 3225 | . . . . 5 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
22 | 7, 21 | bitrd 279 | . . . 4 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
23 | 22 | rexbidva 3183 | . . 3 ⊢ (𝑀 ∈ (Met‘𝑋) → (∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
24 | 23 | pm5.32i 574 | . 2 ⊢ ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
25 | 1, 24 | bitri 275 | 1 ⊢ (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦 ∈ 𝑋 ∀𝑧 ∈ 𝑋 (𝑦𝑀𝑧) ≤ 𝑥)) |
Colors of variables: wff setvar class |
Syntax hints: ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 ∀wral 3067 ∃wrex 3076 class class class wbr 5166 × cxp 5698 Fn wfn 6568 ⟶wf 6569 ‘cfv 6573 (class class class)co 7448 ℝcr 11183 0cc0 11184 ≤ cle 11325 [,]cicc 13410 Metcmet 21373 Bndcbnd 37727 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-1st 8030 df-2nd 8031 df-er 8763 df-ec 8765 df-map 8886 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-2 12356 df-rp 13058 df-xneg 13175 df-xadd 13176 df-xmul 13177 df-icc 13414 df-psmet 21379 df-xmet 21380 df-met 21381 df-bl 21382 df-bnd 37739 |
This theorem is referenced by: equivbnd 37750 iccbnd 37800 |
Copyright terms: Public domain | W3C validator |