Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3b Structured version   Visualization version   GIF version

Theorem isbnd3b 37752
Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
isbnd3b (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑀   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isbnd3b
StepHypRef Expression
1 isbnd3 37751 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
2 metf 24194 . . . . . . 7 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
32adantr 480 . . . . . 6 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
4 ffn 6670 . . . . . 6 (𝑀:(𝑋 × 𝑋)⟶ℝ → 𝑀 Fn (𝑋 × 𝑋))
5 ffnov 7495 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥)))
65baib 535 . . . . . 6 (𝑀 Fn (𝑋 × 𝑋) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥)))
73, 4, 63syl 18 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥)))
8 0red 11153 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → 0 ∈ ℝ)
9 simplr 768 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → 𝑥 ∈ ℝ)
10 metcl 24196 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
11103expb 1120 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
1211adantlr 715 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
13 metge0 24209 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → 0 ≤ (𝑦𝑀𝑧))
14133expb 1120 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑦𝑀𝑧))
1514adantlr 715 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑦𝑀𝑧))
16 elicc2 13348 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
17 df-3an 1088 . . . . . . . . 9 (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥) ↔ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧)) ∧ (𝑦𝑀𝑧) ≤ 𝑥))
1816, 17bitrdi 287 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧)) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
1918baibd 539 . . . . . . 7 (((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧))) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (𝑦𝑀𝑧) ≤ 𝑥))
208, 9, 12, 15, 19syl22anc 838 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (𝑦𝑀𝑧) ≤ 𝑥))
21202ralbidva 3197 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
227, 21bitrd 279 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
2322rexbidva 3155 . . 3 (𝑀 ∈ (Met‘𝑋) → (∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
2423pm5.32i 574 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
251, 24bitri 275 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
Colors of variables: wff setvar class
Syntax hints:  wb 206  wa 395  w3a 1086  wcel 2109  wral 3044  wrex 3053   class class class wbr 5102   × cxp 5629   Fn wfn 6494  wf 6495  cfv 6499  (class class class)co 7369  cr 11043  0cc0 11044  cle 11185  [,]cicc 13285  Metcmet 21226  Bndcbnd 37734
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-ec 8650  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-div 11812  df-nn 12163  df-2 12225  df-rp 12928  df-xneg 13048  df-xadd 13049  df-xmul 13050  df-icc 13289  df-psmet 21232  df-xmet 21233  df-met 21234  df-bl 21235  df-bnd 37746
This theorem is referenced by:  equivbnd  37757  iccbnd  37807
  Copyright terms: Public domain W3C validator