Mathbox for Jeff Madsen < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isbnd3b Structured version   Visualization version   GIF version

Theorem isbnd3b 35239
 Description: A metric space is bounded iff the metric function maps to some bounded real interval. (Contributed by Mario Carneiro, 22-Sep-2015.)
Assertion
Ref Expression
isbnd3b (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
Distinct variable groups:   𝑥,𝑦,𝑧,𝑀   𝑥,𝑋,𝑦,𝑧

Proof of Theorem isbnd3b
StepHypRef Expression
1 isbnd3 35238 . 2 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)))
2 metf 22944 . . . . . . 7 (𝑀 ∈ (Met‘𝑋) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
32adantr 484 . . . . . 6 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → 𝑀:(𝑋 × 𝑋)⟶ℝ)
4 ffn 6487 . . . . . 6 (𝑀:(𝑋 × 𝑋)⟶ℝ → 𝑀 Fn (𝑋 × 𝑋))
5 ffnov 7258 . . . . . . 7 (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ (𝑀 Fn (𝑋 × 𝑋) ∧ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥)))
65baib 539 . . . . . 6 (𝑀 Fn (𝑋 × 𝑋) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥)))
73, 4, 63syl 18 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥)))
8 0red 10635 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → 0 ∈ ℝ)
9 simplr 768 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → 𝑥 ∈ ℝ)
10 metcl 22946 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → (𝑦𝑀𝑧) ∈ ℝ)
11103expb 1117 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
1211adantlr 714 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → (𝑦𝑀𝑧) ∈ ℝ)
13 metge0 22959 . . . . . . . . 9 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑦𝑋𝑧𝑋) → 0 ≤ (𝑦𝑀𝑧))
14133expb 1117 . . . . . . . 8 ((𝑀 ∈ (Met‘𝑋) ∧ (𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑦𝑀𝑧))
1514adantlr 714 . . . . . . 7 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → 0 ≤ (𝑦𝑀𝑧))
16 elicc2 12792 . . . . . . . . 9 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
17 df-3an 1086 . . . . . . . . 9 (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧) ∧ (𝑦𝑀𝑧) ≤ 𝑥) ↔ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧)) ∧ (𝑦𝑀𝑧) ≤ 𝑥))
1816, 17syl6bb 290 . . . . . . . 8 ((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧)) ∧ (𝑦𝑀𝑧) ≤ 𝑥)))
1918baibd 543 . . . . . . 7 (((0 ∈ ℝ ∧ 𝑥 ∈ ℝ) ∧ ((𝑦𝑀𝑧) ∈ ℝ ∧ 0 ≤ (𝑦𝑀𝑧))) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (𝑦𝑀𝑧) ≤ 𝑥))
208, 9, 12, 15, 19syl22anc 837 . . . . . 6 (((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) ∧ (𝑦𝑋𝑧𝑋)) → ((𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ (𝑦𝑀𝑧) ≤ 𝑥))
21202ralbidva 3163 . . . . 5 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ∈ (0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
227, 21bitrd 282 . . . 4 ((𝑀 ∈ (Met‘𝑋) ∧ 𝑥 ∈ ℝ) → (𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
2322rexbidva 3255 . . 3 (𝑀 ∈ (Met‘𝑋) → (∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥) ↔ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
2423pm5.32i 578 . 2 ((𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ 𝑀:(𝑋 × 𝑋)⟶(0[,]𝑥)) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
251, 24bitri 278 1 (𝑀 ∈ (Bnd‘𝑋) ↔ (𝑀 ∈ (Met‘𝑋) ∧ ∃𝑥 ∈ ℝ ∀𝑦𝑋𝑧𝑋 (𝑦𝑀𝑧) ≤ 𝑥))
 Colors of variables: wff setvar class Syntax hints:   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   ∈ wcel 2111  ∀wral 3106  ∃wrex 3107   class class class wbr 5030   × cxp 5517   Fn wfn 6319  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  ℝcr 10527  0cc0 10528   ≤ cle 10667  [,]cicc 12731  Metcmet 20080  Bndcbnd 35221 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7443  ax-cnex 10584  ax-resscn 10585  ax-1cn 10586  ax-icn 10587  ax-addcl 10588  ax-addrcl 10589  ax-mulcl 10590  ax-mulrcl 10591  ax-mulcom 10592  ax-addass 10593  ax-mulass 10594  ax-distr 10595  ax-i2m1 10596  ax-1ne0 10597  ax-1rid 10598  ax-rnegex 10599  ax-rrecex 10600  ax-cnre 10601  ax-pre-lttri 10602  ax-pre-lttrn 10603  ax-pre-ltadd 10604  ax-pre-mulgt0 10605 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7673  df-2nd 7674  df-er 8274  df-ec 8276  df-map 8393  df-en 8495  df-dom 8496  df-sdom 8497  df-pnf 10668  df-mnf 10669  df-xr 10670  df-ltxr 10671  df-le 10672  df-sub 10863  df-neg 10864  df-div 11289  df-2 11690  df-rp 12380  df-xneg 12497  df-xadd 12498  df-xmul 12499  df-icc 12735  df-psmet 20086  df-xmet 20087  df-met 20088  df-bl 20089  df-bnd 35233 This theorem is referenced by:  equivbnd  35244  iccbnd  35294
 Copyright terms: Public domain W3C validator