MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmgcdeq Structured version   Visualization version   GIF version

Theorem lcmgcdeq 15950
Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmgcdeq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁)))

Proof of Theorem lcmgcdeq
StepHypRef Expression
1 dvdslcm 15936 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
21simpld 497 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 lcm 𝑁))
32adantr 483 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑀 ∥ (𝑀 lcm 𝑁))
4 gcddvds 15846 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
54simprd 498 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑁)
6 breq1 5061 . . . . . . 7 ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → ((𝑀 lcm 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ 𝑁))
75, 6syl5ibrcom 249 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → (𝑀 lcm 𝑁) ∥ 𝑁))
87imp 409 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀 lcm 𝑁) ∥ 𝑁)
9 lcmcl 15939 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
109nn0zd 12079 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℤ)
11 dvdstr 15640 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1210, 11syl3an2 1160 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
13123com12 1119 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
14133expb 1116 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1514anidms 569 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1615adantr 483 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
173, 8, 16mp2and 697 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑀𝑁)
18 absdvdsb 15622 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
19 zabscl 14667 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
20 dvdsabsb 15623 . . . . . . 7 (((abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2119, 20sylan 582 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2218, 21bitrd 281 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2322adantr 483 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2417, 23mpbid 234 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑀) ∥ (abs‘𝑁))
251simprd 498 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 lcm 𝑁))
2625adantr 483 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑁 ∥ (𝑀 lcm 𝑁))
274simpld 497 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
28 breq1 5061 . . . . . . 7 ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → ((𝑀 lcm 𝑁) ∥ 𝑀 ↔ (𝑀 gcd 𝑁) ∥ 𝑀))
2927, 28syl5ibrcom 249 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → (𝑀 lcm 𝑁) ∥ 𝑀))
3029imp 409 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀 lcm 𝑁) ∥ 𝑀)
31 dvdstr 15640 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3210, 31syl3an2 1160 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
33323coml 1123 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
34333expb 1116 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3534anidms 569 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3635adantr 483 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3726, 30, 36mp2and 697 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑁𝑀)
38 absdvdsb 15622 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ 𝑀))
39 zabscl 14667 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
40 dvdsabsb 15623 . . . . . . . 8 (((abs‘𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) ∥ 𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4139, 40sylan 582 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) ∥ 𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4238, 41bitrd 281 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4342ancoms 461 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4443adantr 483 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4537, 44mpbid 234 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑁) ∥ (abs‘𝑀))
46 nn0abscl 14666 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
47 nn0abscl 14666 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
4846, 47anim12i 614 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∈ ℕ0 ∧ (abs‘𝑁) ∈ ℕ0))
49 dvdseq 15658 . . . . . 6 ((((abs‘𝑀) ∈ ℕ0 ∧ (abs‘𝑁) ∈ ℕ0) ∧ ((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀))) → (abs‘𝑀) = (abs‘𝑁))
5048, 49sylan 582 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀))) → (abs‘𝑀) = (abs‘𝑁))
5150ex 415 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀)) → (abs‘𝑀) = (abs‘𝑁)))
5251adantr 483 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀)) → (abs‘𝑀) = (abs‘𝑁)))
5324, 45, 52mp2and 697 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑀) = (abs‘𝑁))
54 lcmid 15947 . . . . . . . 8 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5519, 54syl 17 . . . . . . 7 (𝑀 ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = (abs‘(abs‘𝑀)))
56 gcdid 15869 . . . . . . . 8 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) gcd (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5719, 56syl 17 . . . . . . 7 (𝑀 ∈ ℤ → ((abs‘𝑀) gcd (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5855, 57eqtr4d 2859 . . . . . 6 (𝑀 ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑀)))
59 oveq2 7158 . . . . . . 7 ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) lcm (abs‘𝑁)))
60 oveq2 7158 . . . . . . 7 ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) gcd (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑁)))
6159, 60eqeq12d 2837 . . . . . 6 ((abs‘𝑀) = (abs‘𝑁) → (((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑀)) ↔ ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁))))
6258, 61syl5ibcom 247 . . . . 5 (𝑀 ∈ ℤ → ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁))))
6362imp 409 . . . 4 ((𝑀 ∈ ℤ ∧ (abs‘𝑀) = (abs‘𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)))
6463adantlr 713 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)))
65 lcmabs 15943 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
66 gcdabs 15871 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
6765, 66eqeq12d 2837 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)) ↔ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)))
6867adantr 483 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → (((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)) ↔ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)))
6964, 68mpbid 234 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁))
7053, 69impbida 799 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398   = wceq 1533  wcel 2110   class class class wbr 5058  cfv 6349  (class class class)co 7150  0cn0 11891  cz 11975  abscabs 14587  cdvds 15601   gcd cgcd 15837   lcm clcm 15926
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608  ax-pre-sup 10609
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-iun 4913  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-om 7575  df-2nd 7684  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-er 8283  df-en 8504  df-dom 8505  df-sdom 8506  df-sup 8900  df-inf 8901  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-div 11292  df-nn 11633  df-2 11694  df-3 11695  df-n0 11892  df-z 11976  df-uz 12238  df-rp 12384  df-fl 13156  df-mod 13232  df-seq 13364  df-exp 13424  df-cj 14452  df-re 14453  df-im 14454  df-sqrt 14588  df-abs 14589  df-dvds 15602  df-gcd 15838  df-lcm 15928
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator