MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmgcdeq Structured version   Visualization version   GIF version

Theorem lcmgcdeq 16582
Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmgcdeq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁)))

Proof of Theorem lcmgcdeq
StepHypRef Expression
1 dvdslcm 16568 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
21simpld 494 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 lcm 𝑁))
32adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑀 ∥ (𝑀 lcm 𝑁))
4 gcddvds 16473 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
54simprd 495 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑁)
6 breq1 5110 . . . . . . 7 ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → ((𝑀 lcm 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ 𝑁))
75, 6syl5ibrcom 247 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → (𝑀 lcm 𝑁) ∥ 𝑁))
87imp 406 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀 lcm 𝑁) ∥ 𝑁)
9 lcmcl 16571 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
109nn0zd 12555 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℤ)
11 dvdstr 16264 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1210, 11syl3an2 1164 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
13123com12 1123 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
14133expb 1120 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1514anidms 566 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1615adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
173, 8, 16mp2and 699 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑀𝑁)
18 absdvdsb 16244 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
19 zabscl 15279 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
20 dvdsabsb 16245 . . . . . . 7 (((abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2119, 20sylan 580 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2218, 21bitrd 279 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2322adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2417, 23mpbid 232 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑀) ∥ (abs‘𝑁))
251simprd 495 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 lcm 𝑁))
2625adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑁 ∥ (𝑀 lcm 𝑁))
274simpld 494 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
28 breq1 5110 . . . . . . 7 ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → ((𝑀 lcm 𝑁) ∥ 𝑀 ↔ (𝑀 gcd 𝑁) ∥ 𝑀))
2927, 28syl5ibrcom 247 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → (𝑀 lcm 𝑁) ∥ 𝑀))
3029imp 406 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀 lcm 𝑁) ∥ 𝑀)
31 dvdstr 16264 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3210, 31syl3an2 1164 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
33323coml 1127 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
34333expb 1120 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3534anidms 566 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3635adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3726, 30, 36mp2and 699 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑁𝑀)
38 absdvdsb 16244 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ 𝑀))
39 zabscl 15279 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
40 dvdsabsb 16245 . . . . . . . 8 (((abs‘𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) ∥ 𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4139, 40sylan 580 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) ∥ 𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4238, 41bitrd 279 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4342ancoms 458 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4443adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4537, 44mpbid 232 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑁) ∥ (abs‘𝑀))
46 nn0abscl 15278 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
47 nn0abscl 15278 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
4846, 47anim12i 613 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∈ ℕ0 ∧ (abs‘𝑁) ∈ ℕ0))
49 dvdseq 16284 . . . . . 6 ((((abs‘𝑀) ∈ ℕ0 ∧ (abs‘𝑁) ∈ ℕ0) ∧ ((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀))) → (abs‘𝑀) = (abs‘𝑁))
5048, 49sylan 580 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀))) → (abs‘𝑀) = (abs‘𝑁))
5150ex 412 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀)) → (abs‘𝑀) = (abs‘𝑁)))
5251adantr 480 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀)) → (abs‘𝑀) = (abs‘𝑁)))
5324, 45, 52mp2and 699 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑀) = (abs‘𝑁))
54 lcmid 16579 . . . . . . . 8 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5519, 54syl 17 . . . . . . 7 (𝑀 ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = (abs‘(abs‘𝑀)))
56 gcdid 16497 . . . . . . . 8 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) gcd (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5719, 56syl 17 . . . . . . 7 (𝑀 ∈ ℤ → ((abs‘𝑀) gcd (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5855, 57eqtr4d 2767 . . . . . 6 (𝑀 ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑀)))
59 oveq2 7395 . . . . . . 7 ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) lcm (abs‘𝑁)))
60 oveq2 7395 . . . . . . 7 ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) gcd (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑁)))
6159, 60eqeq12d 2745 . . . . . 6 ((abs‘𝑀) = (abs‘𝑁) → (((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑀)) ↔ ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁))))
6258, 61syl5ibcom 245 . . . . 5 (𝑀 ∈ ℤ → ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁))))
6362imp 406 . . . 4 ((𝑀 ∈ ℤ ∧ (abs‘𝑀) = (abs‘𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)))
6463adantlr 715 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)))
65 lcmabs 16575 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
66 gcdabs 16501 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
6765, 66eqeq12d 2745 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)) ↔ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)))
6867adantr 480 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → (((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)) ↔ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)))
6964, 68mpbid 232 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁))
7053, 69impbida 800 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109   class class class wbr 5107  cfv 6511  (class class class)co 7387  0cn0 12442  cz 12529  abscabs 15200  cdvds 16222   gcd cgcd 16464   lcm clcm 16558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-om 7843  df-2nd 7969  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-er 8671  df-en 8919  df-dom 8920  df-sdom 8921  df-sup 9393  df-inf 9394  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-n0 12443  df-z 12530  df-uz 12794  df-rp 12952  df-fl 13754  df-mod 13832  df-seq 13967  df-exp 14027  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-dvds 16223  df-gcd 16465  df-lcm 16560
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator