MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lcmgcdeq Structured version   Visualization version   GIF version

Theorem lcmgcdeq 16659
Description: Two integers' absolute values are equal iff their least common multiple and greatest common divisor are equal. (Contributed by Steve Rodriguez, 20-Jan-2020.)
Assertion
Ref Expression
lcmgcdeq ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁)))

Proof of Theorem lcmgcdeq
StepHypRef Expression
1 dvdslcm 16645 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 ∥ (𝑀 lcm 𝑁) ∧ 𝑁 ∥ (𝑀 lcm 𝑁)))
21simpld 494 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∥ (𝑀 lcm 𝑁))
32adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑀 ∥ (𝑀 lcm 𝑁))
4 gcddvds 16549 . . . . . . . 8 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 gcd 𝑁) ∥ 𝑀 ∧ (𝑀 gcd 𝑁) ∥ 𝑁))
54simprd 495 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑁)
6 breq1 5169 . . . . . . 7 ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → ((𝑀 lcm 𝑁) ∥ 𝑁 ↔ (𝑀 gcd 𝑁) ∥ 𝑁))
75, 6syl5ibrcom 247 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → (𝑀 lcm 𝑁) ∥ 𝑁))
87imp 406 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀 lcm 𝑁) ∥ 𝑁)
9 lcmcl 16648 . . . . . . . . . . 11 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℕ0)
109nn0zd 12665 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 lcm 𝑁) ∈ ℤ)
11 dvdstr 16342 . . . . . . . . . 10 ((𝑀 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1210, 11syl3an2 1164 . . . . . . . . 9 ((𝑀 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
13123com12 1123 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
14133expb 1120 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1514anidms 566 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
1615adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → ((𝑀 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑁) → 𝑀𝑁))
173, 8, 16mp2and 698 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑀𝑁)
18 absdvdsb 16323 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ 𝑁))
19 zabscl 15362 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℤ)
20 dvdsabsb 16324 . . . . . . 7 (((abs‘𝑀) ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2119, 20sylan 579 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∥ 𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2218, 21bitrd 279 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2322adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀𝑁 ↔ (abs‘𝑀) ∥ (abs‘𝑁)))
2417, 23mpbid 232 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑀) ∥ (abs‘𝑁))
251simprd 495 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∥ (𝑀 lcm 𝑁))
2625adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑁 ∥ (𝑀 lcm 𝑁))
274simpld 494 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑀 gcd 𝑁) ∥ 𝑀)
28 breq1 5169 . . . . . . 7 ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → ((𝑀 lcm 𝑁) ∥ 𝑀 ↔ (𝑀 gcd 𝑁) ∥ 𝑀))
2927, 28syl5ibrcom 247 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) → (𝑀 lcm 𝑁) ∥ 𝑀))
3029imp 406 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑀 lcm 𝑁) ∥ 𝑀)
31 dvdstr 16342 . . . . . . . . . 10 ((𝑁 ∈ ℤ ∧ (𝑀 lcm 𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3210, 31syl3an2 1164 . . . . . . . . 9 ((𝑁 ∈ ℤ ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
33323coml 1127 . . . . . . . 8 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
34333expb 1120 . . . . . . 7 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3534anidms 566 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3635adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → ((𝑁 ∥ (𝑀 lcm 𝑁) ∧ (𝑀 lcm 𝑁) ∥ 𝑀) → 𝑁𝑀))
3726, 30, 36mp2and 698 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → 𝑁𝑀)
38 absdvdsb 16323 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ 𝑀))
39 zabscl 15362 . . . . . . . 8 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℤ)
40 dvdsabsb 16324 . . . . . . . 8 (((abs‘𝑁) ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) ∥ 𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4139, 40sylan 579 . . . . . . 7 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → ((abs‘𝑁) ∥ 𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4238, 41bitrd 279 . . . . . 6 ((𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4342ancoms 458 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4443adantr 480 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (𝑁𝑀 ↔ (abs‘𝑁) ∥ (abs‘𝑀)))
4537, 44mpbid 232 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑁) ∥ (abs‘𝑀))
46 nn0abscl 15361 . . . . . . 7 (𝑀 ∈ ℤ → (abs‘𝑀) ∈ ℕ0)
47 nn0abscl 15361 . . . . . . 7 (𝑁 ∈ ℤ → (abs‘𝑁) ∈ ℕ0)
4846, 47anim12i 612 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) ∈ ℕ0 ∧ (abs‘𝑁) ∈ ℕ0))
49 dvdseq 16362 . . . . . 6 ((((abs‘𝑀) ∈ ℕ0 ∧ (abs‘𝑁) ∈ ℕ0) ∧ ((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀))) → (abs‘𝑀) = (abs‘𝑁))
5048, 49sylan 579 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ ((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀))) → (abs‘𝑀) = (abs‘𝑁))
5150ex 412 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀)) → (abs‘𝑀) = (abs‘𝑁)))
5251adantr 480 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (((abs‘𝑀) ∥ (abs‘𝑁) ∧ (abs‘𝑁) ∥ (abs‘𝑀)) → (abs‘𝑀) = (abs‘𝑁)))
5324, 45, 52mp2and 698 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)) → (abs‘𝑀) = (abs‘𝑁))
54 lcmid 16656 . . . . . . . 8 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5519, 54syl 17 . . . . . . 7 (𝑀 ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = (abs‘(abs‘𝑀)))
56 gcdid 16573 . . . . . . . 8 ((abs‘𝑀) ∈ ℤ → ((abs‘𝑀) gcd (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5719, 56syl 17 . . . . . . 7 (𝑀 ∈ ℤ → ((abs‘𝑀) gcd (abs‘𝑀)) = (abs‘(abs‘𝑀)))
5855, 57eqtr4d 2783 . . . . . 6 (𝑀 ∈ ℤ → ((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑀)))
59 oveq2 7456 . . . . . . 7 ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) lcm (abs‘𝑁)))
60 oveq2 7456 . . . . . . 7 ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) gcd (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑁)))
6159, 60eqeq12d 2756 . . . . . 6 ((abs‘𝑀) = (abs‘𝑁) → (((abs‘𝑀) lcm (abs‘𝑀)) = ((abs‘𝑀) gcd (abs‘𝑀)) ↔ ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁))))
6258, 61syl5ibcom 245 . . . . 5 (𝑀 ∈ ℤ → ((abs‘𝑀) = (abs‘𝑁) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁))))
6362imp 406 . . . 4 ((𝑀 ∈ ℤ ∧ (abs‘𝑀) = (abs‘𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)))
6463adantlr 714 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → ((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)))
65 lcmabs 16652 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) lcm (abs‘𝑁)) = (𝑀 lcm 𝑁))
66 gcdabs 16577 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((abs‘𝑀) gcd (abs‘𝑁)) = (𝑀 gcd 𝑁))
6765, 66eqeq12d 2756 . . . 4 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)) ↔ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)))
6867adantr 480 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → (((abs‘𝑀) lcm (abs‘𝑁)) = ((abs‘𝑀) gcd (abs‘𝑁)) ↔ (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁)))
6964, 68mpbid 232 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (abs‘𝑀) = (abs‘𝑁)) → (𝑀 lcm 𝑁) = (𝑀 gcd 𝑁))
7053, 69impbida 800 1 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀 lcm 𝑁) = (𝑀 gcd 𝑁) ↔ (abs‘𝑀) = (abs‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108   class class class wbr 5166  cfv 6573  (class class class)co 7448  0cn0 12553  cz 12639  abscabs 15283  cdvds 16302   gcd cgcd 16540   lcm clcm 16635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-en 9004  df-dom 9005  df-sdom 9006  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-n0 12554  df-z 12640  df-uz 12904  df-rp 13058  df-fl 13843  df-mod 13921  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-dvds 16303  df-gcd 16541  df-lcm 16637
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator