HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubcan2 Structured version   Visualization version   GIF version

Theorem hvsubcan2 29156
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubcan2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem hvsubcan2
StepHypRef Expression
1 hvsubcl 29098 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 𝐴) ∈ ℋ)
213adant3 1134 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 𝐴) ∈ ℋ)
3 hvsubcl 29098 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 𝐵) ∈ ℋ)
433adant2 1133 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 𝐵) ∈ ℋ)
5 neg1cn 11944 . . . . . 6 -1 ∈ ℂ
6 neg1ne0 11946 . . . . . 6 -1 ≠ 0
75, 6pm3.2i 474 . . . . 5 (-1 ∈ ℂ ∧ -1 ≠ 0)
8 hvmulcan 29153 . . . . 5 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝐶 𝐴) ∈ ℋ ∧ (𝐶 𝐵) ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐶 𝐴) = (𝐶 𝐵)))
97, 8mp3an1 1450 . . . 4 (((𝐶 𝐴) ∈ ℋ ∧ (𝐶 𝐵) ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐶 𝐴) = (𝐶 𝐵)))
102, 4, 9syl2anc 587 . . 3 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐶 𝐴) = (𝐶 𝐵)))
11 hvnegdi 29148 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (-1 · (𝐶 𝐴)) = (𝐴 𝐶))
12113adant3 1134 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐶 𝐴)) = (𝐴 𝐶))
13 hvnegdi 29148 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐶 𝐵)) = (𝐵 𝐶))
14133adant2 1133 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐶 𝐵)) = (𝐵 𝐶))
1512, 14eqeq12d 2753 . . 3 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐴 𝐶) = (𝐵 𝐶)))
16 hvsubcan 29155 . . 3 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 𝐴) = (𝐶 𝐵) ↔ 𝐴 = 𝐵))
1710, 15, 163bitr3d 312 . 2 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))
18173coml 1129 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940  (class class class)co 7213  cc 10727  0cc0 10729  1c1 10730  -cneg 11063  chba 29000   · csm 29002   cmv 29006
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806  ax-hfvadd 29081  ax-hvcom 29082  ax-hvass 29083  ax-hv0cl 29084  ax-hvaddid 29085  ax-hfvmul 29086  ax-hvmulid 29087  ax-hvmulass 29088  ax-hvdistr1 29089  ax-hvdistr2 29090  ax-hvmul0 29091
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490  df-hvsub 29052
This theorem is referenced by:  hvaddsub4  29159
  Copyright terms: Public domain W3C validator