![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > hvsubcan2 | Structured version Visualization version GIF version |
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.) |
Ref | Expression |
---|---|
hvsubcan2 | ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐶) = (𝐵 −ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hvsubcl 31049 | . . . . 5 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 −ℎ 𝐴) ∈ ℋ) | |
2 | 1 | 3adant3 1132 | . . . 4 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 −ℎ 𝐴) ∈ ℋ) |
3 | hvsubcl 31049 | . . . . 5 ⊢ ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 −ℎ 𝐵) ∈ ℋ) | |
4 | 3 | 3adant2 1131 | . . . 4 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 −ℎ 𝐵) ∈ ℋ) |
5 | neg1cn 12407 | . . . . . 6 ⊢ -1 ∈ ℂ | |
6 | neg1ne0 12409 | . . . . . 6 ⊢ -1 ≠ 0 | |
7 | 5, 6 | pm3.2i 470 | . . . . 5 ⊢ (-1 ∈ ℂ ∧ -1 ≠ 0) |
8 | hvmulcan 31104 | . . . . 5 ⊢ (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝐶 −ℎ 𝐴) ∈ ℋ ∧ (𝐶 −ℎ 𝐵) ∈ ℋ) → ((-1 ·ℎ (𝐶 −ℎ 𝐴)) = (-1 ·ℎ (𝐶 −ℎ 𝐵)) ↔ (𝐶 −ℎ 𝐴) = (𝐶 −ℎ 𝐵))) | |
9 | 7, 8 | mp3an1 1448 | . . . 4 ⊢ (((𝐶 −ℎ 𝐴) ∈ ℋ ∧ (𝐶 −ℎ 𝐵) ∈ ℋ) → ((-1 ·ℎ (𝐶 −ℎ 𝐴)) = (-1 ·ℎ (𝐶 −ℎ 𝐵)) ↔ (𝐶 −ℎ 𝐴) = (𝐶 −ℎ 𝐵))) |
10 | 2, 4, 9 | syl2anc 583 | . . 3 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((-1 ·ℎ (𝐶 −ℎ 𝐴)) = (-1 ·ℎ (𝐶 −ℎ 𝐵)) ↔ (𝐶 −ℎ 𝐴) = (𝐶 −ℎ 𝐵))) |
11 | hvnegdi 31099 | . . . . 5 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (-1 ·ℎ (𝐶 −ℎ 𝐴)) = (𝐴 −ℎ 𝐶)) | |
12 | 11 | 3adant3 1132 | . . . 4 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐶 −ℎ 𝐴)) = (𝐴 −ℎ 𝐶)) |
13 | hvnegdi 31099 | . . . . 5 ⊢ ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐶 −ℎ 𝐵)) = (𝐵 −ℎ 𝐶)) | |
14 | 13 | 3adant2 1131 | . . . 4 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 ·ℎ (𝐶 −ℎ 𝐵)) = (𝐵 −ℎ 𝐶)) |
15 | 12, 14 | eqeq12d 2756 | . . 3 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((-1 ·ℎ (𝐶 −ℎ 𝐴)) = (-1 ·ℎ (𝐶 −ℎ 𝐵)) ↔ (𝐴 −ℎ 𝐶) = (𝐵 −ℎ 𝐶))) |
16 | hvsubcan 31106 | . . 3 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 −ℎ 𝐴) = (𝐶 −ℎ 𝐵) ↔ 𝐴 = 𝐵)) | |
17 | 10, 15, 16 | 3bitr3d 309 | . 2 ⊢ ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 −ℎ 𝐶) = (𝐵 −ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
18 | 17 | 3coml 1127 | 1 ⊢ ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 −ℎ 𝐶) = (𝐵 −ℎ 𝐶) ↔ 𝐴 = 𝐵)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 (class class class)co 7448 ℂcc 11182 0cc0 11184 1c1 11185 -cneg 11521 ℋchba 30951 ·ℎ csm 30953 −ℎ cmv 30957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 ax-hfvadd 31032 ax-hvcom 31033 ax-hvass 31034 ax-hv0cl 31035 ax-hvaddid 31036 ax-hfvmul 31037 ax-hvmulid 31038 ax-hvmulass 31039 ax-hvdistr1 31040 ax-hvdistr2 31041 ax-hvmul0 31042 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-id 5593 df-po 5607 df-so 5608 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-div 11948 df-hvsub 31003 |
This theorem is referenced by: hvaddsub4 31110 |
Copyright terms: Public domain | W3C validator |