HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubcan2 Structured version   Visualization version   GIF version

Theorem hvsubcan2 31037
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubcan2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem hvsubcan2
StepHypRef Expression
1 hvsubcl 30979 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 𝐴) ∈ ℋ)
213adant3 1132 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 𝐴) ∈ ℋ)
3 hvsubcl 30979 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 𝐵) ∈ ℋ)
433adant2 1131 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 𝐵) ∈ ℋ)
5 neg1cn 12131 . . . . . 6 -1 ∈ ℂ
6 neg1ne0 12133 . . . . . 6 -1 ≠ 0
75, 6pm3.2i 470 . . . . 5 (-1 ∈ ℂ ∧ -1 ≠ 0)
8 hvmulcan 31034 . . . . 5 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝐶 𝐴) ∈ ℋ ∧ (𝐶 𝐵) ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐶 𝐴) = (𝐶 𝐵)))
97, 8mp3an1 1450 . . . 4 (((𝐶 𝐴) ∈ ℋ ∧ (𝐶 𝐵) ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐶 𝐴) = (𝐶 𝐵)))
102, 4, 9syl2anc 584 . . 3 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐶 𝐴) = (𝐶 𝐵)))
11 hvnegdi 31029 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (-1 · (𝐶 𝐴)) = (𝐴 𝐶))
12113adant3 1132 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐶 𝐴)) = (𝐴 𝐶))
13 hvnegdi 31029 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐶 𝐵)) = (𝐵 𝐶))
14133adant2 1131 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐶 𝐵)) = (𝐵 𝐶))
1512, 14eqeq12d 2745 . . 3 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐴 𝐶) = (𝐵 𝐶)))
16 hvsubcan 31036 . . 3 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 𝐴) = (𝐶 𝐵) ↔ 𝐴 = 𝐵))
1710, 15, 163bitr3d 309 . 2 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))
18173coml 1127 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2925  (class class class)co 7353  cc 11026  0cc0 11028  1c1 11029  -cneg 11366  chba 30881   · csm 30883   cmv 30887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-iun 4946  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-po 5531  df-so 5532  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-er 8632  df-en 8880  df-dom 8881  df-sdom 8882  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-hvsub 30933
This theorem is referenced by:  hvaddsub4  31040
  Copyright terms: Public domain W3C validator