HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hvsubcan2 Structured version   Visualization version   GIF version

Theorem hvsubcan2 31011
Description: Cancellation law for vector addition. (Contributed by NM, 18-May-2005.) (New usage is discouraged.)
Assertion
Ref Expression
hvsubcan2 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))

Proof of Theorem hvsubcan2
StepHypRef Expression
1 hvsubcl 30953 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (𝐶 𝐴) ∈ ℋ)
213adant3 1132 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 𝐴) ∈ ℋ)
3 hvsubcl 30953 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 𝐵) ∈ ℋ)
433adant2 1131 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (𝐶 𝐵) ∈ ℋ)
5 neg1cn 12178 . . . . . 6 -1 ∈ ℂ
6 neg1ne0 12180 . . . . . 6 -1 ≠ 0
75, 6pm3.2i 470 . . . . 5 (-1 ∈ ℂ ∧ -1 ≠ 0)
8 hvmulcan 31008 . . . . 5 (((-1 ∈ ℂ ∧ -1 ≠ 0) ∧ (𝐶 𝐴) ∈ ℋ ∧ (𝐶 𝐵) ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐶 𝐴) = (𝐶 𝐵)))
97, 8mp3an1 1450 . . . 4 (((𝐶 𝐴) ∈ ℋ ∧ (𝐶 𝐵) ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐶 𝐴) = (𝐶 𝐵)))
102, 4, 9syl2anc 584 . . 3 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐶 𝐴) = (𝐶 𝐵)))
11 hvnegdi 31003 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ) → (-1 · (𝐶 𝐴)) = (𝐴 𝐶))
12113adant3 1132 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐶 𝐴)) = (𝐴 𝐶))
13 hvnegdi 31003 . . . . 5 ((𝐶 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐶 𝐵)) = (𝐵 𝐶))
14133adant2 1131 . . . 4 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → (-1 · (𝐶 𝐵)) = (𝐵 𝐶))
1512, 14eqeq12d 2746 . . 3 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((-1 · (𝐶 𝐴)) = (-1 · (𝐶 𝐵)) ↔ (𝐴 𝐶) = (𝐵 𝐶)))
16 hvsubcan 31010 . . 3 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐶 𝐴) = (𝐶 𝐵) ↔ 𝐴 = 𝐵))
1710, 15, 163bitr3d 309 . 2 ((𝐶 ∈ ℋ ∧ 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))
18173coml 1127 1 ((𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ∧ 𝐶 ∈ ℋ) → ((𝐴 𝐶) = (𝐵 𝐶) ↔ 𝐴 = 𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2109  wne 2926  (class class class)co 7390  cc 11073  0cc0 11075  1c1 11076  -cneg 11413  chba 30855   · csm 30857   cmv 30861
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152  ax-hfvadd 30936  ax-hvcom 30937  ax-hvass 30938  ax-hv0cl 30939  ax-hvaddid 30940  ax-hfvmul 30941  ax-hvmulid 30942  ax-hvmulass 30943  ax-hvdistr1 30944  ax-hvdistr2 30945  ax-hvmul0 30946
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-po 5549  df-so 5550  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-er 8674  df-en 8922  df-dom 8923  df-sdom 8924  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-div 11843  df-hvsub 30907
This theorem is referenced by:  hvaddsub4  31014
  Copyright terms: Public domain W3C validator