MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdiv2 Structured version   Visualization version   GIF version

Theorem ltdiv2 11718
Description: Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005.)
Assertion
Ref Expression
ltdiv2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))

Proof of Theorem ltdiv2
StepHypRef Expression
1 ltrec 11714 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
213adant3 1134 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
3 gt0ne0 11297 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
4 rereccl 11550 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
53, 4syldan 594 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / 𝐵) ∈ ℝ)
6 gt0ne0 11297 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
7 rereccl 11550 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
86, 7syldan 594 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
9 ltmul2 11683 . . . . . 6 (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
108, 9syl3an2 1166 . . . . 5 (((1 / 𝐵) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
115, 10syl3an1 1165 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
12 recn 10819 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
1312adantr 484 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ∈ ℂ)
14 recn 10819 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1514adantr 484 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
1615, 3jca 515 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
17 recn 10819 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1817adantr 484 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
1918, 6jca 515 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
20 divrec 11506 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
21203expb 1122 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
22213adant3 1134 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
23 divrec 11506 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
24233expb 1122 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
25243adant2 1133 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
2622, 25breq12d 5066 . . . . . 6 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
2713, 16, 19, 26syl3an 1162 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
28273coml 1129 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
2911, 28bitr4d 285 . . 3 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
30293com12 1125 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
312, 30bitrd 282 1 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1089   = wceq 1543  wcel 2110  wne 2940   class class class wbr 5053  (class class class)co 7213  cc 10727  cr 10728  0cc0 10729  1c1 10730   · cmul 10734   < clt 10867   / cdiv 11489
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-op 4548  df-uni 4820  df-br 5054  df-opab 5116  df-mpt 5136  df-id 5455  df-po 5468  df-so 5469  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-div 11490
This theorem is referenced by:  ltdiv2d  12651  sin01gt0  15751  sincos6thpi  25405  tanord1  25426  basellem1  25963  perfectlem2  26111  bposlem6  26170  dchrisum0flblem2  26390  pntpbnd1a  26466  pntlemr  26483  hgt750lem  32343  stoweidlem42  43258
  Copyright terms: Public domain W3C validator