MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ltdiv2 Structured version   Visualization version   GIF version

Theorem ltdiv2 12082
Description: Division of a positive number by both sides of 'less than'. (Contributed by NM, 27-Apr-2005.)
Assertion
Ref Expression
ltdiv2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))

Proof of Theorem ltdiv2
StepHypRef Expression
1 ltrec 12078 . . 3 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
213adant3 1132 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (1 / 𝐵) < (1 / 𝐴)))
3 gt0ne0 11661 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
4 rereccl 11914 . . . . . 6 ((𝐵 ∈ ℝ ∧ 𝐵 ≠ 0) → (1 / 𝐵) ∈ ℝ)
53, 4syldan 591 . . . . 5 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (1 / 𝐵) ∈ ℝ)
6 gt0ne0 11661 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
7 rereccl 11914 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐴 ≠ 0) → (1 / 𝐴) ∈ ℝ)
86, 7syldan 591 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (1 / 𝐴) ∈ ℝ)
9 ltmul2 12047 . . . . . 6 (((1 / 𝐵) ∈ ℝ ∧ (1 / 𝐴) ∈ ℝ ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
108, 9syl3an2 1164 . . . . 5 (((1 / 𝐵) ∈ ℝ ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
115, 10syl3an1 1163 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
12 recn 11182 . . . . . . 7 (𝐶 ∈ ℝ → 𝐶 ∈ ℂ)
1312adantr 481 . . . . . 6 ((𝐶 ∈ ℝ ∧ 0 < 𝐶) → 𝐶 ∈ ℂ)
14 recn 11182 . . . . . . . 8 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
1514adantr 481 . . . . . . 7 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ∈ ℂ)
1615, 3jca 512 . . . . . 6 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0))
17 recn 11182 . . . . . . . 8 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
1817adantr 481 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ∈ ℂ)
1918, 6jca 512 . . . . . 6 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0))
20 divrec 11870 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
21203expb 1120 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
22213adant3 1132 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐵) = (𝐶 · (1 / 𝐵)))
23 divrec 11870 . . . . . . . . 9 ((𝐶 ∈ ℂ ∧ 𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
24233expb 1120 . . . . . . . 8 ((𝐶 ∈ ℂ ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
25243adant2 1131 . . . . . . 7 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → (𝐶 / 𝐴) = (𝐶 · (1 / 𝐴)))
2622, 25breq12d 5154 . . . . . 6 ((𝐶 ∈ ℂ ∧ (𝐵 ∈ ℂ ∧ 𝐵 ≠ 0) ∧ (𝐴 ∈ ℂ ∧ 𝐴 ≠ 0)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
2713, 16, 19, 26syl3an 1160 . . . . 5 (((𝐶 ∈ ℝ ∧ 0 < 𝐶) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
28273coml 1127 . . . 4 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((𝐶 / 𝐵) < (𝐶 / 𝐴) ↔ (𝐶 · (1 / 𝐵)) < (𝐶 · (1 / 𝐴))))
2911, 28bitr4d 281 . . 3 (((𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
30293com12 1123 . 2 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → ((1 / 𝐵) < (1 / 𝐴) ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
312, 30bitrd 278 1 (((𝐴 ∈ ℝ ∧ 0 < 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵) ∧ (𝐶 ∈ ℝ ∧ 0 < 𝐶)) → (𝐴 < 𝐵 ↔ (𝐶 / 𝐵) < (𝐶 / 𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2939   class class class wbr 5141  (class class class)co 7393  cc 11090  cr 11091  0cc0 11092  1c1 11093   · cmul 11097   < clt 11230   / cdiv 11853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2702  ax-sep 5292  ax-nul 5299  ax-pow 5356  ax-pr 5420  ax-un 7708  ax-resscn 11149  ax-1cn 11150  ax-icn 11151  ax-addcl 11152  ax-addrcl 11153  ax-mulcl 11154  ax-mulrcl 11155  ax-mulcom 11156  ax-addass 11157  ax-mulass 11158  ax-distr 11159  ax-i2m1 11160  ax-1ne0 11161  ax-1rid 11162  ax-rnegex 11163  ax-rrecex 11164  ax-cnre 11165  ax-pre-lttri 11166  ax-pre-lttrn 11167  ax-pre-ltadd 11168  ax-pre-mulgt0 11169
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2533  df-eu 2562  df-clab 2709  df-cleq 2723  df-clel 2809  df-nfc 2884  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3375  df-reu 3376  df-rab 3432  df-v 3475  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-nul 4319  df-if 4523  df-pw 4598  df-sn 4623  df-pr 4625  df-op 4629  df-uni 4902  df-br 5142  df-opab 5204  df-mpt 5225  df-id 5567  df-po 5581  df-so 5582  df-xp 5675  df-rel 5676  df-cnv 5677  df-co 5678  df-dm 5679  df-rn 5680  df-res 5681  df-ima 5682  df-iota 6484  df-fun 6534  df-fn 6535  df-f 6536  df-f1 6537  df-fo 6538  df-f1o 6539  df-fv 6540  df-riota 7349  df-ov 7396  df-oprab 7397  df-mpo 7398  df-er 8686  df-en 8923  df-dom 8924  df-sdom 8925  df-pnf 11232  df-mnf 11233  df-xr 11234  df-ltxr 11235  df-le 11236  df-sub 11428  df-neg 11429  df-div 11854
This theorem is referenced by:  ltdiv2d  13021  sin01gt0  16115  sincos6thpi  25954  tanord1  25975  basellem1  26512  perfectlem2  26660  bposlem6  26719  dchrisum0flblem2  26939  pntpbnd1a  27015  pntlemr  27032  hgt750lem  33492  stoweidlem42  44529
  Copyright terms: Public domain W3C validator