Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > dvdsgcd | Structured version Visualization version GIF version |
Description: An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.) |
Ref | Expression |
---|---|
dvdsgcd | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bezout 16103 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) | |
2 | 1 | 3adant1 1132 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) |
3 | dvds2ln 15850 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁)))) | |
4 | 3 | 3impia 1119 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁))) |
5 | 4 | 3coml 1129 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁))) |
6 | simp3l 1203 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
7 | simp12 1206 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑀 ∈ ℤ) | |
8 | zcn 12181 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
9 | zcn 12181 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
10 | mulcom 10815 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑥 · 𝑀) = (𝑀 · 𝑥)) | |
11 | 8, 9, 10 | syl2an 599 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 · 𝑀) = (𝑀 · 𝑥)) |
12 | 6, 7, 11 | syl2anc 587 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑀) = (𝑀 · 𝑥)) |
13 | simp3r 1204 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
14 | simp13 1207 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ) | |
15 | zcn 12181 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
16 | zcn 12181 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
17 | mulcom 10815 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑦 · 𝑁) = (𝑁 · 𝑦)) | |
18 | 15, 16, 17 | syl2an 599 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 · 𝑁) = (𝑁 · 𝑦)) |
19 | 13, 14, 18 | syl2anc 587 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 𝑁) = (𝑁 · 𝑦)) |
20 | 12, 19 | oveq12d 7231 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑀) + (𝑦 · 𝑁)) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) |
21 | 5, 20 | breqtrd 5079 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∥ ((𝑀 · 𝑥) + (𝑁 · 𝑦))) |
22 | breq2 5057 | . . . . . 6 ⊢ ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → (𝐾 ∥ (𝑀 gcd 𝑁) ↔ 𝐾 ∥ ((𝑀 · 𝑥) + (𝑁 · 𝑦)))) | |
23 | 21, 22 | syl5ibrcom 250 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁))) |
24 | 23 | 3expia 1123 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁)))) |
25 | 24 | rexlimdvv 3212 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁))) |
26 | 25 | ex 416 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁)))) |
27 | 2, 26 | mpid 44 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ∃wrex 3062 class class class wbr 5053 (class class class)co 7213 ℂcc 10727 + caddc 10732 · cmul 10734 ℤcz 12176 ∥ cdvds 15815 gcd cgcd 16053 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-resscn 10786 ax-1cn 10787 ax-icn 10788 ax-addcl 10789 ax-addrcl 10790 ax-mulcl 10791 ax-mulrcl 10792 ax-mulcom 10793 ax-addass 10794 ax-mulass 10795 ax-distr 10796 ax-i2m1 10797 ax-1ne0 10798 ax-1rid 10799 ax-rnegex 10800 ax-rrecex 10801 ax-cnre 10802 ax-pre-lttri 10803 ax-pre-lttrn 10804 ax-pre-ltadd 10805 ax-pre-mulgt0 10806 ax-pre-sup 10807 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-riota 7170 df-ov 7216 df-oprab 7217 df-mpo 7218 df-om 7645 df-2nd 7762 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-er 8391 df-en 8627 df-dom 8628 df-sdom 8629 df-sup 9058 df-inf 9059 df-pnf 10869 df-mnf 10870 df-xr 10871 df-ltxr 10872 df-le 10873 df-sub 11064 df-neg 11065 df-div 11490 df-nn 11831 df-2 11893 df-3 11894 df-n0 12091 df-z 12177 df-uz 12439 df-rp 12587 df-fl 13367 df-mod 13443 df-seq 13575 df-exp 13636 df-cj 14662 df-re 14663 df-im 14664 df-sqrt 14798 df-abs 14799 df-dvds 15816 df-gcd 16054 |
This theorem is referenced by: dvdsgcdb 16105 dfgcd2 16106 mulgcd 16108 mulgcddvds 16212 rpmulgcd2 16213 rpexp 16279 pythagtriplem4 16372 pcgcd1 16430 pockthlem 16458 odadd2 19234 ablfacrp 19453 mumul 26063 lgsne0 26216 lgsquad2lem2 26266 flt4lem2 40187 |
Copyright terms: Public domain | W3C validator |