|   | Metamath Proof Explorer | < Previous  
      Next > Nearby theorems | |
| Mirrors > Home > MPE Home > Th. List > dvdsgcd | Structured version Visualization version GIF version | ||
| Description: An integer which divides each of two others also divides their gcd. (Contributed by Paul Chapman, 22-Jun-2011.) (Revised by Mario Carneiro, 30-May-2014.) | 
| Ref | Expression | 
|---|---|
| dvdsgcd | ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁))) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bezout 16581 | . . 3 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) | |
| 2 | 1 | 3adant1 1130 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) | 
| 3 | dvds2ln 16327 | . . . . . . . . 9 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ)) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁)))) | |
| 4 | 3 | 3impia 1117 | . . . . . . . 8 ⊢ (((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁))) | 
| 5 | 4 | 3coml 1127 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∥ ((𝑥 · 𝑀) + (𝑦 · 𝑁))) | 
| 6 | simp3l 1201 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑥 ∈ ℤ) | |
| 7 | simp12 1204 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑀 ∈ ℤ) | |
| 8 | zcn 12620 | . . . . . . . . . 10 ⊢ (𝑥 ∈ ℤ → 𝑥 ∈ ℂ) | |
| 9 | zcn 12620 | . . . . . . . . . 10 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
| 10 | mulcom 11242 | . . . . . . . . . 10 ⊢ ((𝑥 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝑥 · 𝑀) = (𝑀 · 𝑥)) | |
| 11 | 8, 9, 10 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝑥 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑥 · 𝑀) = (𝑀 · 𝑥)) | 
| 12 | 6, 7, 11 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑥 · 𝑀) = (𝑀 · 𝑥)) | 
| 13 | simp3r 1202 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑦 ∈ ℤ) | |
| 14 | simp13 1205 | . . . . . . . . 9 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝑁 ∈ ℤ) | |
| 15 | zcn 12620 | . . . . . . . . . 10 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
| 16 | zcn 12620 | . . . . . . . . . 10 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
| 17 | mulcom 11242 | . . . . . . . . . 10 ⊢ ((𝑦 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝑦 · 𝑁) = (𝑁 · 𝑦)) | |
| 18 | 15, 16, 17 | syl2an 596 | . . . . . . . . 9 ⊢ ((𝑦 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 · 𝑁) = (𝑁 · 𝑦)) | 
| 19 | 13, 14, 18 | syl2anc 584 | . . . . . . . 8 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → (𝑦 · 𝑁) = (𝑁 · 𝑦)) | 
| 20 | 12, 19 | oveq12d 7450 | . . . . . . 7 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑥 · 𝑀) + (𝑦 · 𝑁)) = ((𝑀 · 𝑥) + (𝑁 · 𝑦))) | 
| 21 | 5, 20 | breqtrd 5168 | . . . . . 6 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → 𝐾 ∥ ((𝑀 · 𝑥) + (𝑁 · 𝑦))) | 
| 22 | breq2 5146 | . . . . . 6 ⊢ ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → (𝐾 ∥ (𝑀 gcd 𝑁) ↔ 𝐾 ∥ ((𝑀 · 𝑥) + (𝑁 · 𝑦)))) | |
| 23 | 21, 22 | syl5ibrcom 247 | . . . . 5 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) ∧ (𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ)) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁))) | 
| 24 | 23 | 3expia 1121 | . . . 4 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → ((𝑥 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁)))) | 
| 25 | 24 | rexlimdvv 3211 | . . 3 ⊢ (((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁)) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁))) | 
| 26 | 25 | ex 412 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → (∃𝑥 ∈ ℤ ∃𝑦 ∈ ℤ (𝑀 gcd 𝑁) = ((𝑀 · 𝑥) + (𝑁 · 𝑦)) → 𝐾 ∥ (𝑀 gcd 𝑁)))) | 
| 27 | 2, 26 | mpid 44 | 1 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 ∥ 𝑀 ∧ 𝐾 ∥ 𝑁) → 𝐾 ∥ (𝑀 gcd 𝑁))) | 
| Colors of variables: wff setvar class | 
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ∃wrex 3069 class class class wbr 5142 (class class class)co 7432 ℂcc 11154 + caddc 11159 · cmul 11161 ℤcz 12615 ∥ cdvds 16291 gcd cgcd 16532 | 
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 ax-pre-sup 11234 | 
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-sup 9483 df-inf 9484 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-div 11922 df-nn 12268 df-2 12330 df-3 12331 df-n0 12529 df-z 12616 df-uz 12880 df-rp 13036 df-fl 13833 df-mod 13911 df-seq 14044 df-exp 14104 df-cj 15139 df-re 15140 df-im 15141 df-sqrt 15275 df-abs 15276 df-dvds 16292 df-gcd 16533 | 
| This theorem is referenced by: dvdsgcdb 16583 dfgcd2 16584 mulgcd 16586 mulgcddvds 16693 rpmulgcd2 16694 rpexp 16760 pythagtriplem4 16858 pcgcd1 16916 pockthlem 16944 odadd2 19868 ablfacrp 20087 mumul 27225 lgsne0 27380 lgsquad2lem2 27430 flt4lem2 42662 | 
| Copyright terms: Public domain | W3C validator |