MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  subdir Structured version   Visualization version   GIF version

Theorem subdir 11594
Description: Distribution of multiplication over subtraction. Theorem I.5 of [Apostol] p. 18. (Contributed by NM, 30-Dec-2005.)
Assertion
Ref Expression
subdir ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด โˆ’ ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ถ)))

Proof of Theorem subdir
StepHypRef Expression
1 subdi 11593 . . 3 ((๐ถ โˆˆ โ„‚ โˆง ๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ถ ยท (๐ด โˆ’ ๐ต)) = ((๐ถ ยท ๐ด) โˆ’ (๐ถ ยท ๐ต)))
213coml 1128 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ถ ยท (๐ด โˆ’ ๐ต)) = ((๐ถ ยท ๐ด) โˆ’ (๐ถ ยท ๐ต)))
3 subcl 11405 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚) โ†’ (๐ด โˆ’ ๐ต) โˆˆ โ„‚)
4 mulcom 11142 . . 3 (((๐ด โˆ’ ๐ต) โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด โˆ’ ๐ต) ยท ๐ถ) = (๐ถ ยท (๐ด โˆ’ ๐ต)))
53, 4stoic3 1779 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด โˆ’ ๐ต) ยท ๐ถ) = (๐ถ ยท (๐ด โˆ’ ๐ต)))
6 mulcom 11142 . . . 4 ((๐ด โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
763adant2 1132 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ด ยท ๐ถ) = (๐ถ ยท ๐ด))
8 mulcom 11142 . . . 4 ((๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
983adant1 1131 . . 3 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ (๐ต ยท ๐ถ) = (๐ถ ยท ๐ต))
107, 9oveq12d 7376 . 2 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ถ)) = ((๐ถ ยท ๐ด) โˆ’ (๐ถ ยท ๐ต)))
112, 5, 103eqtr4d 2783 1 ((๐ด โˆˆ โ„‚ โˆง ๐ต โˆˆ โ„‚ โˆง ๐ถ โˆˆ โ„‚) โ†’ ((๐ด โˆ’ ๐ต) ยท ๐ถ) = ((๐ด ยท ๐ถ) โˆ’ (๐ต ยท ๐ถ)))
Colors of variables: wff setvar class
Syntax hints:   โ†’ wi 4   โˆง w3a 1088   = wceq 1542   โˆˆ wcel 2107  (class class class)co 7358  โ„‚cc 11054   ยท cmul 11061   โˆ’ cmin 11390
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5257  ax-nul 5264  ax-pow 5321  ax-pr 5385  ax-un 7673  ax-resscn 11113  ax-1cn 11114  ax-icn 11115  ax-addcl 11116  ax-addrcl 11117  ax-mulcl 11118  ax-mulrcl 11119  ax-mulcom 11120  ax-addass 11121  ax-mulass 11122  ax-distr 11123  ax-i2m1 11124  ax-1ne0 11125  ax-1rid 11126  ax-rnegex 11127  ax-rrecex 11128  ax-cnre 11129  ax-pre-lttri 11130  ax-pre-lttrn 11131  ax-pre-ltadd 11132
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3353  df-rab 3407  df-v 3446  df-sbc 3741  df-csb 3857  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4284  df-if 4488  df-pw 4563  df-sn 4588  df-pr 4590  df-op 4594  df-uni 4867  df-br 5107  df-opab 5169  df-mpt 5190  df-id 5532  df-po 5546  df-so 5547  df-xp 5640  df-rel 5641  df-cnv 5642  df-co 5643  df-dm 5644  df-rn 5645  df-res 5646  df-ima 5647  df-iota 6449  df-fun 6499  df-fn 6500  df-f 6501  df-f1 6502  df-fo 6503  df-f1o 6504  df-fv 6505  df-riota 7314  df-ov 7361  df-oprab 7362  df-mpo 7363  df-er 8651  df-en 8887  df-dom 8888  df-sdom 8889  df-pnf 11196  df-mnf 11197  df-ltxr 11199  df-sub 11392
This theorem is referenced by:  mulneg1  11596  subdiri  11610  subdird  11617  bpoly3  15946  dvds2sub  16178  cncongr1  16548  cncongr2  16549  eulerthlem2  16659  pythagtriplem1  16693  brbtwn2  27896  colinearalglem4  27900  ax5seglem1  27919  ax5seglem2  27920  sin2h  36114  itg2addnclem3  36177
  Copyright terms: Public domain W3C validator