MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  xadddir Structured version   Visualization version   GIF version

Theorem xadddir 13012
Description: Commuted version of xadddi 13011. (Contributed by Mario Carneiro, 20-Aug-2015.)
Assertion
Ref Expression
xadddir ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))

Proof of Theorem xadddir
StepHypRef Expression
1 xadddi 13011 . . 3 ((𝐶 ∈ ℝ ∧ 𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵)))
213coml 1125 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐶 ·e (𝐴 +𝑒 𝐵)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵)))
3 xaddcl 12955 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
433adant3 1130 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 +𝑒 𝐵) ∈ ℝ*)
5 rexr 11005 . . . 4 (𝐶 ∈ ℝ → 𝐶 ∈ ℝ*)
653ad2ant3 1133 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐶 ∈ ℝ*)
7 xmulcom 12982 . . 3 (((𝐴 +𝑒 𝐵) ∈ ℝ*𝐶 ∈ ℝ*) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (𝐶 ·e (𝐴 +𝑒 𝐵)))
84, 6, 7syl2anc 583 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = (𝐶 ·e (𝐴 +𝑒 𝐵)))
9 simp1 1134 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐴 ∈ ℝ*)
10 xmulcom 12982 . . . 4 ((𝐴 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐴 ·e 𝐶) = (𝐶 ·e 𝐴))
119, 6, 10syl2anc 583 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐴 ·e 𝐶) = (𝐶 ·e 𝐴))
12 simp2 1135 . . . 4 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → 𝐵 ∈ ℝ*)
13 xmulcom 12982 . . . 4 ((𝐵 ∈ ℝ*𝐶 ∈ ℝ*) → (𝐵 ·e 𝐶) = (𝐶 ·e 𝐵))
1412, 6, 13syl2anc 583 . . 3 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → (𝐵 ·e 𝐶) = (𝐶 ·e 𝐵))
1511, 14oveq12d 7286 . 2 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)) = ((𝐶 ·e 𝐴) +𝑒 (𝐶 ·e 𝐵)))
162, 8, 153eqtr4d 2789 1 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*𝐶 ∈ ℝ) → ((𝐴 +𝑒 𝐵) ·e 𝐶) = ((𝐴 ·e 𝐶) +𝑒 (𝐵 ·e 𝐶)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1085   = wceq 1541  wcel 2109  (class class class)co 7268  cr 10854  *cxr 10992   +𝑒 cxad 12828   ·e cxmu 12829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1801  ax-4 1815  ax-5 1916  ax-6 1974  ax-7 2014  ax-8 2111  ax-9 2119  ax-10 2140  ax-11 2157  ax-12 2174  ax-ext 2710  ax-sep 5226  ax-nul 5233  ax-pow 5291  ax-pr 5355  ax-un 7579  ax-cnex 10911  ax-resscn 10912  ax-1cn 10913  ax-icn 10914  ax-addcl 10915  ax-addrcl 10916  ax-mulcl 10917  ax-mulrcl 10918  ax-mulcom 10919  ax-addass 10920  ax-mulass 10921  ax-distr 10922  ax-i2m1 10923  ax-1ne0 10924  ax-1rid 10925  ax-rnegex 10926  ax-rrecex 10927  ax-cnre 10928  ax-pre-lttri 10929  ax-pre-lttrn 10930  ax-pre-ltadd 10931
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1544  df-fal 1554  df-ex 1786  df-nf 1790  df-sb 2071  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2817  df-nfc 2890  df-ne 2945  df-nel 3051  df-ral 3070  df-rex 3071  df-reu 3072  df-rab 3074  df-v 3432  df-sbc 3720  df-csb 3837  df-dif 3894  df-un 3896  df-in 3898  df-ss 3908  df-nul 4262  df-if 4465  df-pw 4540  df-sn 4567  df-pr 4569  df-op 4573  df-uni 4845  df-iun 4931  df-br 5079  df-opab 5141  df-mpt 5162  df-id 5488  df-po 5502  df-so 5503  df-xp 5594  df-rel 5595  df-cnv 5596  df-co 5597  df-dm 5598  df-rn 5599  df-res 5600  df-ima 5601  df-iota 6388  df-fun 6432  df-fn 6433  df-f 6434  df-f1 6435  df-fo 6436  df-f1o 6437  df-fv 6438  df-riota 7225  df-ov 7271  df-oprab 7272  df-mpo 7273  df-1st 7817  df-2nd 7818  df-er 8472  df-en 8708  df-dom 8709  df-sdom 8710  df-pnf 10995  df-mnf 10996  df-xr 10997  df-ltxr 10998  df-le 10999  df-sub 11190  df-neg 11191  df-xneg 12830  df-xadd 12831  df-xmul 12832
This theorem is referenced by:  xrge0adddir  31280
  Copyright terms: Public domain W3C validator