![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > xadddi2r | Structured version Visualization version GIF version |
Description: Commuted version of xadddi2 13280. (Contributed by Mario Carneiro, 20-Aug-2015.) |
Ref | Expression |
---|---|
xadddi2r | โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ ((๐ด +๐ ๐ต) ยทe ๐ถ) = ((๐ด ยทe ๐ถ) +๐ (๐ต ยทe ๐ถ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | xadddi2 13280 | . . 3 โข ((๐ถ โ โ* โง (๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต)) โ (๐ถ ยทe (๐ด +๐ ๐ต)) = ((๐ถ ยทe ๐ด) +๐ (๐ถ ยทe ๐ต))) | |
2 | 1 | 3coml 1127 | . 2 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ (๐ถ ยทe (๐ด +๐ ๐ต)) = ((๐ถ ยทe ๐ด) +๐ (๐ถ ยทe ๐ต))) |
3 | simp1l 1197 | . . . 4 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ ๐ด โ โ*) | |
4 | simp2l 1199 | . . . 4 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ ๐ต โ โ*) | |
5 | xaddcl 13222 | . . . 4 โข ((๐ด โ โ* โง ๐ต โ โ*) โ (๐ด +๐ ๐ต) โ โ*) | |
6 | 3, 4, 5 | syl2anc 584 | . . 3 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ (๐ด +๐ ๐ต) โ โ*) |
7 | simp3 1138 | . . 3 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ ๐ถ โ โ*) | |
8 | xmulcom 13249 | . . 3 โข (((๐ด +๐ ๐ต) โ โ* โง ๐ถ โ โ*) โ ((๐ด +๐ ๐ต) ยทe ๐ถ) = (๐ถ ยทe (๐ด +๐ ๐ต))) | |
9 | 6, 7, 8 | syl2anc 584 | . 2 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ ((๐ด +๐ ๐ต) ยทe ๐ถ) = (๐ถ ยทe (๐ด +๐ ๐ต))) |
10 | xmulcom 13249 | . . . 4 โข ((๐ด โ โ* โง ๐ถ โ โ*) โ (๐ด ยทe ๐ถ) = (๐ถ ยทe ๐ด)) | |
11 | 3, 7, 10 | syl2anc 584 | . . 3 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ (๐ด ยทe ๐ถ) = (๐ถ ยทe ๐ด)) |
12 | xmulcom 13249 | . . . 4 โข ((๐ต โ โ* โง ๐ถ โ โ*) โ (๐ต ยทe ๐ถ) = (๐ถ ยทe ๐ต)) | |
13 | 4, 7, 12 | syl2anc 584 | . . 3 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ (๐ต ยทe ๐ถ) = (๐ถ ยทe ๐ต)) |
14 | 11, 13 | oveq12d 7429 | . 2 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ ((๐ด ยทe ๐ถ) +๐ (๐ต ยทe ๐ถ)) = ((๐ถ ยทe ๐ด) +๐ (๐ถ ยทe ๐ต))) |
15 | 2, 9, 14 | 3eqtr4d 2782 | 1 โข (((๐ด โ โ* โง 0 โค ๐ด) โง (๐ต โ โ* โง 0 โค ๐ต) โง ๐ถ โ โ*) โ ((๐ด +๐ ๐ต) ยทe ๐ถ) = ((๐ด ยทe ๐ถ) +๐ (๐ต ยทe ๐ถ))) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 396 โง w3a 1087 = wceq 1541 โ wcel 2106 class class class wbr 5148 (class class class)co 7411 0cc0 11112 โ*cxr 11251 โค cle 11253 +๐ cxad 13094 ยทe cxmu 13095 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-id 5574 df-po 5588 df-so 5589 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-1st 7977 df-2nd 7978 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-xneg 13096 df-xadd 13097 df-xmul 13098 |
This theorem is referenced by: x2times 13282 xrsmulgzz 32434 |
Copyright terms: Public domain | W3C validator |