![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fzrevral2 | Structured version Visualization version GIF version |
Description: Reversal of scanning order inside of a universal quantification restricted to a finite set of sequential integers. (Contributed by NM, 25-Nov-2005.) |
Ref | Expression |
---|---|
fzrevral2 | ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | zsubcl 12634 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 − 𝑁) ∈ ℤ) | |
2 | 1 | 3adant2 1128 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 − 𝑁) ∈ ℤ) |
3 | zsubcl 12634 | . . . . 5 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝐾 − 𝑀) ∈ ℤ) | |
4 | 3 | 3adant3 1129 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝐾 − 𝑀) ∈ ℤ) |
5 | simp1 1133 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝐾 ∈ ℤ) | |
6 | fzrevral 13618 | . . . 4 ⊢ (((𝐾 − 𝑁) ∈ ℤ ∧ (𝐾 − 𝑀) ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (𝐾 − 𝑀))...(𝐾 − (𝐾 − 𝑁)))[(𝐾 − 𝑘) / 𝑗]𝜑)) | |
7 | 2, 4, 5, 6 | syl3anc 1368 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ ((𝐾 − (𝐾 − 𝑀))...(𝐾 − (𝐾 − 𝑁)))[(𝐾 − 𝑘) / 𝑗]𝜑)) |
8 | zcn 12593 | . . . . 5 ⊢ (𝐾 ∈ ℤ → 𝐾 ∈ ℂ) | |
9 | zcn 12593 | . . . . 5 ⊢ (𝑀 ∈ ℤ → 𝑀 ∈ ℂ) | |
10 | zcn 12593 | . . . . 5 ⊢ (𝑁 ∈ ℤ → 𝑁 ∈ ℂ) | |
11 | nncan 11519 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ) → (𝐾 − (𝐾 − 𝑀)) = 𝑀) | |
12 | 11 | 3adant3 1129 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾 − 𝑀)) = 𝑀) |
13 | nncan 11519 | . . . . . . 7 ⊢ ((𝐾 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾 − 𝑁)) = 𝑁) | |
14 | 13 | 3adant2 1128 | . . . . . 6 ⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → (𝐾 − (𝐾 − 𝑁)) = 𝑁) |
15 | 12, 14 | oveq12d 7434 | . . . . 5 ⊢ ((𝐾 ∈ ℂ ∧ 𝑀 ∈ ℂ ∧ 𝑁 ∈ ℂ) → ((𝐾 − (𝐾 − 𝑀))...(𝐾 − (𝐾 − 𝑁))) = (𝑀...𝑁)) |
16 | 8, 9, 10, 15 | syl3an 1157 | . . . 4 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝐾 − (𝐾 − 𝑀))...(𝐾 − (𝐾 − 𝑁))) = (𝑀...𝑁)) |
17 | 16 | raleqdv 3315 | . . 3 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑘 ∈ ((𝐾 − (𝐾 − 𝑀))...(𝐾 − (𝐾 − 𝑁)))[(𝐾 − 𝑘) / 𝑗]𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) |
18 | 7, 17 | bitrd 278 | . 2 ⊢ ((𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) |
19 | 18 | 3coml 1124 | 1 ⊢ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) → (∀𝑗 ∈ ((𝐾 − 𝑁)...(𝐾 − 𝑀))𝜑 ↔ ∀𝑘 ∈ (𝑀...𝑁)[(𝐾 − 𝑘) / 𝑗]𝜑)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∀wral 3051 [wsbc 3768 (class class class)co 7416 ℂcc 11136 − cmin 11474 ℤcz 12588 ...cfz 13516 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-sep 5294 ax-nul 5301 ax-pow 5359 ax-pr 5423 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3769 df-csb 3885 df-dif 3942 df-un 3944 df-in 3946 df-ss 3956 df-pss 3959 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-op 4631 df-uni 4904 df-iun 4993 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7372 df-ov 7419 df-oprab 7420 df-mpo 7421 df-om 7869 df-1st 7991 df-2nd 7992 df-frecs 8285 df-wrecs 8316 df-recs 8390 df-rdg 8429 df-er 8723 df-en 8963 df-dom 8964 df-sdom 8965 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11476 df-neg 11477 df-nn 12243 df-n0 12503 df-z 12589 df-uz 12853 df-fz 13517 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |