MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fzind2 Structured version   Visualization version   GIF version

Theorem fzind2 13824
Description: Induction on the integers from 𝑀 to 𝑁 inclusive. The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. Version of fzind 12716 using integer range definitions. (Contributed by Mario Carneiro, 6-Feb-2016.)
Hypotheses
Ref Expression
fzind2.1 (𝑥 = 𝑀 → (𝜑𝜓))
fzind2.2 (𝑥 = 𝑦 → (𝜑𝜒))
fzind2.3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
fzind2.4 (𝑥 = 𝐾 → (𝜑𝜏))
fzind2.5 (𝑁 ∈ (ℤ𝑀) → 𝜓)
fzind2.6 (𝑦 ∈ (𝑀..^𝑁) → (𝜒𝜃))
Assertion
Ref Expression
fzind2 (𝐾 ∈ (𝑀...𝑁) → 𝜏)
Distinct variable groups:   𝑥,𝐾   𝑥,𝑀,𝑦   𝑥,𝑁,𝑦   𝜒,𝑥   𝜑,𝑦   𝜓,𝑥   𝜏,𝑥   𝜃,𝑥
Allowed substitution hints:   𝜑(𝑥)   𝜓(𝑦)   𝜒(𝑦)   𝜃(𝑦)   𝜏(𝑦)   𝐾(𝑦)

Proof of Theorem fzind2
StepHypRef Expression
1 elfz2 13554 . . 3 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
2 anass 468 . . . 4 ((((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
3 df-3an 1089 . . . . 5 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ))
43anbi1i 624 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)))
5 3anass 1095 . . . . 5 ((𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁) ↔ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁)))
65anbi2i 623 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ (𝑀𝐾𝐾𝑁))))
72, 4, 63bitr4i 303 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝐾 ∈ ℤ) ∧ (𝑀𝐾𝐾𝑁)) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
81, 7bitri 275 . 2 (𝐾 ∈ (𝑀...𝑁) ↔ ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)))
9 fzind2.1 . . 3 (𝑥 = 𝑀 → (𝜑𝜓))
10 fzind2.2 . . 3 (𝑥 = 𝑦 → (𝜑𝜒))
11 fzind2.3 . . 3 (𝑥 = (𝑦 + 1) → (𝜑𝜃))
12 fzind2.4 . . 3 (𝑥 = 𝐾 → (𝜑𝜏))
13 eluz2 12884 . . . 4 (𝑁 ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁))
14 fzind2.5 . . . 4 (𝑁 ∈ (ℤ𝑀) → 𝜓)
1513, 14sylbir 235 . . 3 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑀𝑁) → 𝜓)
16 3anass 1095 . . . 4 ((𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁) ↔ (𝑦 ∈ ℤ ∧ (𝑀𝑦𝑦 < 𝑁)))
17 elfzo 13701 . . . . . . . 8 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → (𝑦 ∈ (𝑀..^𝑁) ↔ (𝑀𝑦𝑦 < 𝑁)))
18 fzind2.6 . . . . . . . 8 (𝑦 ∈ (𝑀..^𝑁) → (𝜒𝜃))
1917, 18biimtrrdi 254 . . . . . . 7 ((𝑦 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → ((𝑀𝑦𝑦 < 𝑁) → (𝜒𝜃)))
20193coml 1128 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑦 ∈ ℤ) → ((𝑀𝑦𝑦 < 𝑁) → (𝜒𝜃)))
21203expa 1119 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ 𝑦 ∈ ℤ) → ((𝑀𝑦𝑦 < 𝑁) → (𝜒𝜃)))
2221impr 454 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ (𝑀𝑦𝑦 < 𝑁))) → (𝜒𝜃))
2316, 22sylan2b 594 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝑦 ∈ ℤ ∧ 𝑀𝑦𝑦 < 𝑁)) → (𝜒𝜃))
249, 10, 11, 12, 15, 23fzind 12716 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝑀𝐾𝐾𝑁)) → 𝜏)
258, 24sylbi 217 1 (𝐾 ∈ (𝑀...𝑁) → 𝜏)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1540  wcel 2108   class class class wbr 5143  cfv 6561  (class class class)co 7431  1c1 11156   + caddc 11158   < clt 11295  cle 11296  cz 12613  cuz 12878  ...cfz 13547  ..^cfzo 13694
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5296  ax-nul 5306  ax-pow 5365  ax-pr 5432  ax-un 7755  ax-cnex 11211  ax-resscn 11212  ax-1cn 11213  ax-icn 11214  ax-addcl 11215  ax-addrcl 11216  ax-mulcl 11217  ax-mulrcl 11218  ax-mulcom 11219  ax-addass 11220  ax-mulass 11221  ax-distr 11222  ax-i2m1 11223  ax-1ne0 11224  ax-1rid 11225  ax-rnegex 11226  ax-rrecex 11227  ax-cnre 11228  ax-pre-lttri 11229  ax-pre-lttrn 11230  ax-pre-ltadd 11231  ax-pre-mulgt0 11232
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-om 7888  df-1st 8014  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-er 8745  df-en 8986  df-dom 8987  df-sdom 8988  df-pnf 11297  df-mnf 11298  df-xr 11299  df-ltxr 11300  df-le 11301  df-sub 11494  df-neg 11495  df-nn 12267  df-n0 12527  df-z 12614  df-uz 12879  df-fz 13548  df-fzo 13695
This theorem is referenced by:  seqcaopr3  14078  seqf1olem2a  14081  prodfn0  15930  prodfrec  15931  smupval  16525  smueqlem  16527  dvntaylp  26413  taylthlem1  26415  pntpbnd1  27630  pntlemf  27649  fmul01  45595  dvnmptdivc  45953  dvnmul  45958  iblspltprt  45988  itgspltprt  45994  stoweidlem3  46018  carageniuncllem1  46536  caratheodorylem1  46541
  Copyright terms: Public domain W3C validator