MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregord13 Structured version   Visualization version   GIF version

Theorem frgrregord13 30377
Description: If a nonempty finite friendship graph is 𝐾-regular, then it must have order 1 or 3. Special case of frgrregord013 30376. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.)
Hypothesis
Ref Expression
frgrreggt1.v 𝑉 = (Vtx‘𝐺)
Assertion
Ref Expression
frgrregord13 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))

Proof of Theorem frgrregord13
StepHypRef Expression
1 simpl1 1192 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FriendGraph )
2 simpl2 1193 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ∈ Fin)
3 simpr 484 . . 3 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾)
4 frgrreggt1.v . . . 4 𝑉 = (Vtx‘𝐺)
54frgrregord013 30376 . . 3 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
61, 2, 3, 5syl3anc 1373 . 2 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
7 hasheq0 14307 . . . . . . . . 9 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅))
8 eqneqall 2936 . . . . . . . . 9 (𝑉 = ∅ → (𝑉 ≠ ∅ → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
97, 8biimtrdi 253 . . . . . . . 8 (𝑉 ∈ Fin → ((♯‘𝑉) = 0 → (𝑉 ≠ ∅ → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
109com23 86 . . . . . . 7 (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))
1110a1i 11 . . . . . 6 (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))))
12113imp 1110 . . . . 5 ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1312adantr 480 . . . 4 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1413com12 32 . . 3 ((♯‘𝑉) = 0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
15 orc 867 . . . 4 ((♯‘𝑉) = 1 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
1615a1d 25 . . 3 ((♯‘𝑉) = 1 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
17 olc 868 . . . 4 ((♯‘𝑉) = 3 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
1817a1d 25 . . 3 ((♯‘𝑉) = 3 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
1914, 16, 183jaoi 1430 . 2 (((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))
206, 19mpcom 38 1 (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  wo 847  w3o 1085  w3a 1086   = wceq 1540  wcel 2109  wne 2925  c0 4292   class class class wbr 5102  cfv 6500  Fincfn 8896  0cc0 11047  1c1 11048  3c3 12221  chash 14274  Vtxcvtx 28978   RegUSGraph crusgr 29539   FriendGraph cfrgr 30239
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7692  ax-inf2 9573  ax-ac2 10395  ax-cnex 11103  ax-resscn 11104  ax-1cn 11105  ax-icn 11106  ax-addcl 11107  ax-addrcl 11108  ax-mulcl 11109  ax-mulrcl 11110  ax-mulcom 11111  ax-addass 11112  ax-mulass 11113  ax-distr 11114  ax-i2m1 11115  ax-1ne0 11116  ax-1rid 11117  ax-rnegex 11118  ax-rrecex 11119  ax-cnre 11120  ax-pre-lttri 11121  ax-pre-lttrn 11122  ax-pre-ltadd 11123  ax-pre-mulgt0 11124  ax-pre-sup 11125
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-ifp 1063  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-tp 4590  df-op 4592  df-uni 4868  df-int 4907  df-iun 4953  df-disj 5070  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-se 5585  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6263  df-ord 6324  df-on 6325  df-lim 6326  df-suc 6327  df-iota 6453  df-fun 6502  df-fn 6503  df-f 6504  df-f1 6505  df-fo 6506  df-f1o 6507  df-fv 6508  df-isom 6509  df-riota 7327  df-ov 7373  df-oprab 7374  df-mpo 7375  df-om 7824  df-1st 7948  df-2nd 7949  df-frecs 8238  df-wrecs 8269  df-recs 8318  df-rdg 8356  df-1o 8412  df-2o 8413  df-oadd 8416  df-er 8649  df-ec 8651  df-qs 8655  df-map 8779  df-pm 8780  df-en 8897  df-dom 8898  df-sdom 8899  df-fin 8900  df-sup 9370  df-inf 9371  df-oi 9440  df-dju 9833  df-card 9871  df-ac 10048  df-pnf 11189  df-mnf 11190  df-xr 11191  df-ltxr 11192  df-le 11193  df-sub 11386  df-neg 11387  df-div 11815  df-nn 12166  df-2 12228  df-3 12229  df-n0 12422  df-xnn0 12495  df-z 12509  df-uz 12773  df-rp 12931  df-xadd 13052  df-ico 13291  df-fz 13448  df-fzo 13595  df-fl 13733  df-mod 13811  df-seq 13946  df-exp 14006  df-hash 14275  df-word 14458  df-lsw 14507  df-concat 14515  df-s1 14540  df-substr 14585  df-pfx 14615  df-reps 14712  df-csh 14732  df-s2 14792  df-s3 14793  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15432  df-sum 15631  df-dvds 16201  df-gcd 16443  df-prm 16620  df-phi 16714  df-vtx 28980  df-iedg 28981  df-edg 29030  df-uhgr 29040  df-ushgr 29041  df-upgr 29064  df-umgr 29065  df-uspgr 29132  df-usgr 29133  df-fusgr 29299  df-nbgr 29315  df-vtxdg 29449  df-rgr 29540  df-rusgr 29541  df-wlks 29582  df-wlkson 29583  df-trls 29673  df-trlson 29674  df-pths 29696  df-spths 29697  df-pthson 29698  df-spthson 29699  df-wwlks 29812  df-wwlksn 29813  df-wwlksnon 29814  df-wspthsn 29815  df-wspthsnon 29816  df-clwwlk 29963  df-clwwlkn 30006  df-clwwlknon 30069  df-conngr 30168  df-frgr 30240
This theorem is referenced by:  frgrogt3nreg  30378
  Copyright terms: Public domain W3C validator