![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrregord13 | Structured version Visualization version GIF version |
Description: If a nonempty finite friendship graph is ðŸ-regular, then it must have order 1 or 3. Special case of frgrregord013 29637. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.) |
Ref | Expression |
---|---|
frgrreggt1.v | ⢠ð = (Vtxâðº) |
Ref | Expression |
---|---|
frgrregord13 | ⢠(((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ((â¯âð) = 1 âš (â¯âð) = 3)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1191 | . . 3 ⢠(((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ðº â FriendGraph ) | |
2 | simpl2 1192 | . . 3 ⢠(((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ð â Fin) | |
3 | simpr 485 | . . 3 ⢠(((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ðº RegUSGraph ðŸ) | |
4 | frgrreggt1.v | . . . 4 ⢠ð = (Vtxâðº) | |
5 | 4 | frgrregord013 29637 | . . 3 ⢠((ðº â FriendGraph ⧠ð â Fin ⧠ðº RegUSGraph ðŸ) â ((â¯âð) = 0 âš (â¯âð) = 1 âš (â¯âð) = 3)) |
6 | 1, 2, 3, 5 | syl3anc 1371 | . 2 ⢠(((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ((â¯âð) = 0 âš (â¯âð) = 1 âš (â¯âð) = 3)) |
7 | hasheq0 14319 | . . . . . . . . 9 ⢠(ð â Fin â ((â¯âð) = 0 â ð = â )) | |
8 | eqneqall 2951 | . . . . . . . . 9 ⢠(ð = â â (ð â â â ((â¯âð) = 1 âš (â¯âð) = 3))) | |
9 | 7, 8 | syl6bi 252 | . . . . . . . 8 ⢠(ð â Fin â ((â¯âð) = 0 â (ð â â â ((â¯âð) = 1 âš (â¯âð) = 3)))) |
10 | 9 | com23 86 | . . . . . . 7 ⢠(ð â Fin â (ð â â â ((â¯âð) = 0 â ((â¯âð) = 1 âš (â¯âð) = 3)))) |
11 | 10 | a1i 11 | . . . . . 6 ⢠(ðº â FriendGraph â (ð â Fin â (ð â â â ((â¯âð) = 0 â ((â¯âð) = 1 âš (â¯âð) = 3))))) |
12 | 11 | 3imp 1111 | . . . . 5 ⢠((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) â ((â¯âð) = 0 â ((â¯âð) = 1 âš (â¯âð) = 3))) |
13 | 12 | adantr 481 | . . . 4 ⢠(((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ((â¯âð) = 0 â ((â¯âð) = 1 âš (â¯âð) = 3))) |
14 | 13 | com12 32 | . . 3 ⢠((â¯âð) = 0 â (((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ((â¯âð) = 1 âš (â¯âð) = 3))) |
15 | orc 865 | . . . 4 ⢠((â¯âð) = 1 â ((â¯âð) = 1 âš (â¯âð) = 3)) | |
16 | 15 | a1d 25 | . . 3 ⢠((â¯âð) = 1 â (((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ((â¯âð) = 1 âš (â¯âð) = 3))) |
17 | olc 866 | . . . 4 ⢠((â¯âð) = 3 â ((â¯âð) = 1 âš (â¯âð) = 3)) | |
18 | 17 | a1d 25 | . . 3 ⢠((â¯âð) = 3 â (((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ((â¯âð) = 1 âš (â¯âð) = 3))) |
19 | 14, 16, 18 | 3jaoi 1427 | . 2 ⢠(((â¯âð) = 0 âš (â¯âð) = 1 âš (â¯âð) = 3) â (((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ((â¯âð) = 1 âš (â¯âð) = 3))) |
20 | 6, 19 | mpcom 38 | 1 ⢠(((ðº â FriendGraph ⧠ð â Fin ⧠ð â â ) ⧠ðº RegUSGraph ðŸ) â ((â¯âð) = 1 âš (â¯âð) = 3)) |
Colors of variables: wff setvar class |
Syntax hints: â wi 4 ⧠wa 396 âš wo 845 âš w3o 1086 ⧠w3a 1087 = wceq 1541 â wcel 2106 â wne 2940 â c0 4321 class class class wbr 5147 âcfv 6540 Fincfn 8935 0cc0 11106 1c1 11107 3c3 12264 â¯chash 14286 Vtxcvtx 28245 RegUSGraph crusgr 28802 FriendGraph cfrgr 29500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-inf2 9632 ax-ac2 10454 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 ax-pre-sup 11184 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-ifp 1062 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-tp 4632 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-disj 5113 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8699 df-ec 8701 df-qs 8705 df-map 8818 df-pm 8819 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-sup 9433 df-inf 9434 df-oi 9501 df-dju 9892 df-card 9930 df-ac 10107 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-div 11868 df-nn 12209 df-2 12271 df-3 12272 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-rp 12971 df-xadd 13089 df-ico 13326 df-fz 13481 df-fzo 13624 df-fl 13753 df-mod 13831 df-seq 13963 df-exp 14024 df-hash 14287 df-word 14461 df-lsw 14509 df-concat 14517 df-s1 14542 df-substr 14587 df-pfx 14617 df-reps 14715 df-csh 14735 df-s2 14795 df-s3 14796 df-cj 15042 df-re 15043 df-im 15044 df-sqrt 15178 df-abs 15179 df-clim 15428 df-sum 15629 df-dvds 16194 df-gcd 16432 df-prm 16605 df-phi 16695 df-vtx 28247 df-iedg 28248 df-edg 28297 df-uhgr 28307 df-ushgr 28308 df-upgr 28331 df-umgr 28332 df-uspgr 28399 df-usgr 28400 df-fusgr 28563 df-nbgr 28579 df-vtxdg 28712 df-rgr 28803 df-rusgr 28804 df-wlks 28845 df-wlkson 28846 df-trls 28938 df-trlson 28939 df-pths 28962 df-spths 28963 df-pthson 28964 df-spthson 28965 df-wwlks 29073 df-wwlksn 29074 df-wwlksnon 29075 df-wspthsn 29076 df-wspthsnon 29077 df-clwwlk 29224 df-clwwlkn 29267 df-clwwlknon 29330 df-conngr 29429 df-frgr 29501 |
This theorem is referenced by: frgrogt3nreg 29639 |
Copyright terms: Public domain | W3C validator |