| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrregord13 | Structured version Visualization version GIF version | ||
| Description: If a nonempty finite friendship graph is 𝐾-regular, then it must have order 1 or 3. Special case of frgrregord013 30331. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.) |
| Ref | Expression |
|---|---|
| frgrreggt1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| frgrregord13 | ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FriendGraph ) | |
| 2 | simpl2 1193 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ∈ Fin) | |
| 3 | simpr 484 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾) | |
| 4 | frgrreggt1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 4 | frgrregord013 30331 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | . 2 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) |
| 7 | hasheq0 14338 | . . . . . . . . 9 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅)) | |
| 8 | eqneqall 2938 | . . . . . . . . 9 ⊢ (𝑉 = ∅ → (𝑉 ≠ ∅ → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) | |
| 9 | 7, 8 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 0 → (𝑉 ≠ ∅ → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))) |
| 10 | 9 | com23 86 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))) |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))) |
| 12 | 11 | 3imp 1110 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 14 | 13 | com12 32 | . . 3 ⊢ ((♯‘𝑉) = 0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 15 | orc 867 | . . . 4 ⊢ ((♯‘𝑉) = 1 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) | |
| 16 | 15 | a1d 25 | . . 3 ⊢ ((♯‘𝑉) = 1 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 17 | olc 868 | . . . 4 ⊢ ((♯‘𝑉) = 3 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) | |
| 18 | 17 | a1d 25 | . . 3 ⊢ ((♯‘𝑉) = 3 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 19 | 14, 16, 18 | 3jaoi 1430 | . 2 ⊢ (((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 20 | 6, 19 | mpcom 38 | 1 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 ∅c0 4304 class class class wbr 5115 ‘cfv 6519 Fincfn 8922 0cc0 11086 1c1 11087 3c3 12253 ♯chash 14305 Vtxcvtx 28930 RegUSGraph crusgr 29491 FriendGraph cfrgr 30194 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5242 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-inf2 9612 ax-ac2 10434 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 ax-pre-sup 11164 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-tp 4602 df-op 4604 df-uni 4880 df-int 4919 df-iun 4965 df-disj 5083 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-se 5600 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-isom 6528 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-1st 7977 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-1o 8443 df-2o 8444 df-oadd 8447 df-er 8682 df-ec 8684 df-qs 8688 df-map 8805 df-pm 8806 df-en 8923 df-dom 8924 df-sdom 8925 df-fin 8926 df-sup 9411 df-inf 9412 df-oi 9481 df-dju 9872 df-card 9910 df-ac 10087 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-2 12260 df-3 12261 df-n0 12459 df-xnn0 12532 df-z 12546 df-uz 12810 df-rp 12966 df-xadd 13086 df-ico 13325 df-fz 13482 df-fzo 13629 df-fl 13766 df-mod 13844 df-seq 13977 df-exp 14037 df-hash 14306 df-word 14489 df-lsw 14538 df-concat 14546 df-s1 14571 df-substr 14616 df-pfx 14646 df-reps 14744 df-csh 14764 df-s2 14824 df-s3 14825 df-cj 15075 df-re 15076 df-im 15077 df-sqrt 15211 df-abs 15212 df-clim 15461 df-sum 15660 df-dvds 16230 df-gcd 16471 df-prm 16648 df-phi 16742 df-vtx 28932 df-iedg 28933 df-edg 28982 df-uhgr 28992 df-ushgr 28993 df-upgr 29016 df-umgr 29017 df-uspgr 29084 df-usgr 29085 df-fusgr 29251 df-nbgr 29267 df-vtxdg 29401 df-rgr 29492 df-rusgr 29493 df-wlks 29534 df-wlkson 29535 df-trls 29627 df-trlson 29628 df-pths 29651 df-spths 29652 df-pthson 29653 df-spthson 29654 df-wwlks 29767 df-wwlksn 29768 df-wwlksnon 29769 df-wspthsn 29770 df-wspthsnon 29771 df-clwwlk 29918 df-clwwlkn 29961 df-clwwlknon 30024 df-conngr 30123 df-frgr 30195 |
| This theorem is referenced by: frgrogt3nreg 30333 |
| Copyright terms: Public domain | W3C validator |