| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrregord13 | Structured version Visualization version GIF version | ||
| Description: If a nonempty finite friendship graph is 𝐾-regular, then it must have order 1 or 3. Special case of frgrregord013 30374. (Contributed by Alexander van der Vekens, 9-Oct-2018.) (Revised by AV, 4-Jun-2021.) |
| Ref | Expression |
|---|---|
| frgrreggt1.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| Ref | Expression |
|---|---|
| frgrregord13 | ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl1 1192 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 ∈ FriendGraph ) | |
| 2 | simpl2 1193 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝑉 ∈ Fin) | |
| 3 | simpr 484 | . . 3 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → 𝐺 RegUSGraph 𝐾) | |
| 4 | frgrreggt1.v | . . . 4 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 5 | 4 | frgrregord013 30374 | . . 3 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) |
| 6 | 1, 2, 3, 5 | syl3anc 1373 | . 2 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) |
| 7 | hasheq0 14304 | . . . . . . . . 9 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 0 ↔ 𝑉 = ∅)) | |
| 8 | eqneqall 2936 | . . . . . . . . 9 ⊢ (𝑉 = ∅ → (𝑉 ≠ ∅ → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) | |
| 9 | 7, 8 | biimtrdi 253 | . . . . . . . 8 ⊢ (𝑉 ∈ Fin → ((♯‘𝑉) = 0 → (𝑉 ≠ ∅ → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))) |
| 10 | 9 | com23 86 | . . . . . . 7 ⊢ (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)))) |
| 11 | 10 | a1i 11 | . . . . . 6 ⊢ (𝐺 ∈ FriendGraph → (𝑉 ∈ Fin → (𝑉 ≠ ∅ → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))))) |
| 12 | 11 | 3imp 1110 | . . . . 5 ⊢ ((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 13 | 12 | adantr 480 | . . . 4 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 0 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 14 | 13 | com12 32 | . . 3 ⊢ ((♯‘𝑉) = 0 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 15 | orc 867 | . . . 4 ⊢ ((♯‘𝑉) = 1 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) | |
| 16 | 15 | a1d 25 | . . 3 ⊢ ((♯‘𝑉) = 1 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 17 | olc 868 | . . . 4 ⊢ ((♯‘𝑉) = 3 → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) | |
| 18 | 17 | a1d 25 | . . 3 ⊢ ((♯‘𝑉) = 3 → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 19 | 14, 16, 18 | 3jaoi 1430 | . 2 ⊢ (((♯‘𝑉) = 0 ∨ (♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3) → (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3))) |
| 20 | 6, 19 | mpcom 38 | 1 ⊢ (((𝐺 ∈ FriendGraph ∧ 𝑉 ∈ Fin ∧ 𝑉 ≠ ∅) ∧ 𝐺 RegUSGraph 𝐾) → ((♯‘𝑉) = 1 ∨ (♯‘𝑉) = 3)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∅c0 4292 class class class wbr 5102 ‘cfv 6499 Fincfn 8895 0cc0 11044 1c1 11045 3c3 12218 ♯chash 14271 Vtxcvtx 28976 RegUSGraph crusgr 29537 FriendGraph cfrgr 30237 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-inf2 9570 ax-ac2 10392 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-pre-sup 11122 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-ifp 1063 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-disj 5070 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-ec 8650 df-qs 8654 df-map 8778 df-pm 8779 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-sup 9369 df-inf 9370 df-oi 9439 df-dju 9830 df-card 9868 df-ac 10045 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-rp 12928 df-xadd 13049 df-ico 13288 df-fz 13445 df-fzo 13592 df-fl 13730 df-mod 13808 df-seq 13943 df-exp 14003 df-hash 14272 df-word 14455 df-lsw 14504 df-concat 14512 df-s1 14537 df-substr 14582 df-pfx 14612 df-reps 14710 df-csh 14730 df-s2 14790 df-s3 14791 df-cj 15041 df-re 15042 df-im 15043 df-sqrt 15177 df-abs 15178 df-clim 15430 df-sum 15629 df-dvds 16199 df-gcd 16441 df-prm 16618 df-phi 16712 df-vtx 28978 df-iedg 28979 df-edg 29028 df-uhgr 29038 df-ushgr 29039 df-upgr 29062 df-umgr 29063 df-uspgr 29130 df-usgr 29131 df-fusgr 29297 df-nbgr 29313 df-vtxdg 29447 df-rgr 29538 df-rusgr 29539 df-wlks 29580 df-wlkson 29581 df-trls 29671 df-trlson 29672 df-pths 29694 df-spths 29695 df-pthson 29696 df-spthson 29697 df-wwlks 29810 df-wwlksn 29811 df-wwlksnon 29812 df-wspthsn 29813 df-wspthsnon 29814 df-clwwlk 29961 df-clwwlkn 30004 df-clwwlknon 30067 df-conngr 30166 df-frgr 30238 |
| This theorem is referenced by: frgrogt3nreg 30376 |
| Copyright terms: Public domain | W3C validator |