![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrregorufr | Structured version Visualization version GIF version |
Description: If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
Ref | Expression |
---|---|
frgrregorufr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrregorufr0.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrregorufr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
frgrregorufr | ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrregorufr0.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrregorufr0.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | frgrregorufr0.d | . . 3 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
4 | 1, 2, 3 | frgrregorufr0 27673 | . 2 ⊢ (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
5 | orc 894 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | |
6 | 5 | a1d 25 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
7 | fveq2 6411 | . . . . . . . 8 ⊢ (𝑣 = 𝑎 → (𝐷‘𝑣) = (𝐷‘𝑎)) | |
8 | 7 | neeq1d 3030 | . . . . . . 7 ⊢ (𝑣 = 𝑎 → ((𝐷‘𝑣) ≠ 𝐾 ↔ (𝐷‘𝑎) ≠ 𝐾)) |
9 | 8 | rspcva 3495 | . . . . . 6 ⊢ ((𝑎 ∈ 𝑉 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾) → (𝐷‘𝑎) ≠ 𝐾) |
10 | df-ne 2972 | . . . . . . 7 ⊢ ((𝐷‘𝑎) ≠ 𝐾 ↔ ¬ (𝐷‘𝑎) = 𝐾) | |
11 | pm2.21 121 | . . . . . . 7 ⊢ (¬ (𝐷‘𝑎) = 𝐾 → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) | |
12 | 10, 11 | sylbi 209 | . . . . . 6 ⊢ ((𝐷‘𝑎) ≠ 𝐾 → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
13 | 9, 12 | syl 17 | . . . . 5 ⊢ ((𝑎 ∈ 𝑉 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾) → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
14 | 13 | ancoms 451 | . . . 4 ⊢ ((∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∧ 𝑎 ∈ 𝑉) → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
15 | 14 | rexlimdva 3212 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
16 | olc 895 | . . . 4 ⊢ (∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | |
17 | 16 | a1d 25 | . . 3 ⊢ (∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
18 | 6, 15, 17 | 3jaoi 1553 | . 2 ⊢ ((∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
19 | 4, 18 | syl 17 | 1 ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∨ wo 874 ∨ w3o 1107 = wceq 1653 ∈ wcel 2157 ≠ wne 2971 ∀wral 3089 ∃wrex 3090 ∖ cdif 3766 {csn 4368 {cpr 4370 ‘cfv 6101 Vtxcvtx 26231 Edgcedg 26282 VtxDegcvtxdg 26715 FriendGraph cfrgr 27605 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 ax-cnex 10280 ax-resscn 10281 ax-1cn 10282 ax-icn 10283 ax-addcl 10284 ax-addrcl 10285 ax-mulcl 10286 ax-mulrcl 10287 ax-mulcom 10288 ax-addass 10289 ax-mulass 10290 ax-distr 10291 ax-i2m1 10292 ax-1ne0 10293 ax-1rid 10294 ax-rnegex 10295 ax-rrecex 10296 ax-cnre 10297 ax-pre-lttri 10298 ax-pre-lttrn 10299 ax-pre-ltadd 10300 ax-pre-mulgt0 10301 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-fal 1667 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-nel 3075 df-ral 3094 df-rex 3095 df-reu 3096 df-rmo 3097 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-pred 5898 df-ord 5944 df-on 5945 df-lim 5946 df-suc 5947 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-riota 6839 df-ov 6881 df-oprab 6882 df-mpt2 6883 df-om 7300 df-1st 7401 df-2nd 7402 df-wrecs 7645 df-recs 7707 df-rdg 7745 df-1o 7799 df-2o 7800 df-oadd 7803 df-er 7982 df-en 8196 df-dom 8197 df-sdom 8198 df-fin 8199 df-card 9051 df-cda 9278 df-pnf 10365 df-mnf 10366 df-xr 10367 df-ltxr 10368 df-le 10369 df-sub 10558 df-neg 10559 df-nn 11313 df-2 11376 df-n0 11581 df-xnn0 11653 df-z 11667 df-uz 11931 df-xadd 12194 df-fz 12581 df-hash 13371 df-edg 26283 df-uhgr 26293 df-ushgr 26294 df-upgr 26317 df-umgr 26318 df-uspgr 26386 df-usgr 26387 df-nbgr 26567 df-vtxdg 26716 df-frgr 27606 |
This theorem is referenced by: frgrregorufrg 27675 |
Copyright terms: Public domain | W3C validator |