| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > frgrregorufr | Structured version Visualization version GIF version | ||
| Description: If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
| Ref | Expression |
|---|---|
| frgrregorufr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
| frgrregorufr0.e | ⊢ 𝐸 = (Edg‘𝐺) |
| frgrregorufr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
| Ref | Expression |
|---|---|
| frgrregorufr | ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frgrregorufr0.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
| 2 | frgrregorufr0.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
| 3 | frgrregorufr0.d | . . 3 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
| 4 | 1, 2, 3 | frgrregorufr0 30226 | . 2 ⊢ (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
| 5 | orc 867 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | |
| 6 | 5 | a1d 25 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 7 | fveq2 6840 | . . . . . . . 8 ⊢ (𝑣 = 𝑎 → (𝐷‘𝑣) = (𝐷‘𝑎)) | |
| 8 | 7 | neeq1d 2984 | . . . . . . 7 ⊢ (𝑣 = 𝑎 → ((𝐷‘𝑣) ≠ 𝐾 ↔ (𝐷‘𝑎) ≠ 𝐾)) |
| 9 | 8 | rspcva 3583 | . . . . . 6 ⊢ ((𝑎 ∈ 𝑉 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾) → (𝐷‘𝑎) ≠ 𝐾) |
| 10 | df-ne 2926 | . . . . . . 7 ⊢ ((𝐷‘𝑎) ≠ 𝐾 ↔ ¬ (𝐷‘𝑎) = 𝐾) | |
| 11 | pm2.21 123 | . . . . . . 7 ⊢ (¬ (𝐷‘𝑎) = 𝐾 → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) | |
| 12 | 10, 11 | sylbi 217 | . . . . . 6 ⊢ ((𝐷‘𝑎) ≠ 𝐾 → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 13 | 9, 12 | syl 17 | . . . . 5 ⊢ ((𝑎 ∈ 𝑉 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾) → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 14 | 13 | ancoms 458 | . . . 4 ⊢ ((∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∧ 𝑎 ∈ 𝑉) → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 15 | 14 | rexlimdva 3134 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 16 | olc 868 | . . . 4 ⊢ (∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | |
| 17 | 16 | a1d 25 | . . 3 ⊢ (∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 18 | 6, 15, 17 | 3jaoi 1430 | . 2 ⊢ ((∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| 19 | 4, 18 | syl 17 | 1 ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 847 ∨ w3o 1085 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 ∀wral 3044 ∃wrex 3053 ∖ cdif 3908 {csn 4585 {cpr 4587 ‘cfv 6499 Vtxcvtx 28899 Edgcedg 28950 VtxDegcvtxdg 29369 FriendGraph cfrgr 30160 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-oadd 8415 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-dju 9830 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-xnn0 12492 df-z 12506 df-uz 12770 df-xadd 13049 df-fz 13445 df-hash 14272 df-edg 28951 df-uhgr 28961 df-ushgr 28962 df-upgr 28985 df-umgr 28986 df-uspgr 29053 df-usgr 29054 df-nbgr 29236 df-vtxdg 29370 df-frgr 30161 |
| This theorem is referenced by: frgrregorufrg 30228 |
| Copyright terms: Public domain | W3C validator |