MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregorufr Structured version   Visualization version   GIF version

Theorem frgrregorufr 28110
Description: If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Hypotheses
Ref Expression
frgrregorufr0.v 𝑉 = (Vtx‘𝐺)
frgrregorufr0.e 𝐸 = (Edg‘𝐺)
frgrregorufr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
frgrregorufr (𝐺 ∈ FriendGraph → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑣,𝐷,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤   𝑣,𝐾,𝑤   𝑣,𝑉,𝑤   𝐷,𝑎,𝑣   𝐸,𝑎   𝐾,𝑎   𝑉,𝑎,𝑤
Allowed substitution hints:   𝐸(𝑤)   𝐺(𝑎)

Proof of Theorem frgrregorufr
StepHypRef Expression
1 frgrregorufr0.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrregorufr0.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrregorufr0.d . . 3 𝐷 = (VtxDeg‘𝐺)
41, 2, 3frgrregorufr0 28109 . 2 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
5 orc 864 . . . 4 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
65a1d 25 . . 3 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
7 fveq2 6645 . . . . . . . 8 (𝑣 = 𝑎 → (𝐷𝑣) = (𝐷𝑎))
87neeq1d 3046 . . . . . . 7 (𝑣 = 𝑎 → ((𝐷𝑣) ≠ 𝐾 ↔ (𝐷𝑎) ≠ 𝐾))
98rspcva 3569 . . . . . 6 ((𝑎𝑉 ∧ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾) → (𝐷𝑎) ≠ 𝐾)
10 df-ne 2988 . . . . . . 7 ((𝐷𝑎) ≠ 𝐾 ↔ ¬ (𝐷𝑎) = 𝐾)
11 pm2.21 123 . . . . . . 7 (¬ (𝐷𝑎) = 𝐾 → ((𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
1210, 11sylbi 220 . . . . . 6 ((𝐷𝑎) ≠ 𝐾 → ((𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
139, 12syl 17 . . . . 5 ((𝑎𝑉 ∧ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾) → ((𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
1413ancoms 462 . . . 4 ((∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾𝑎𝑉) → ((𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
1514rexlimdva 3243 . . 3 (∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
16 olc 865 . . . 4 (∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1716a1d 25 . . 3 (∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
186, 15, 173jaoi 1424 . 2 ((∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
194, 18syl 17 1 (𝐺 ∈ FriendGraph → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399  wo 844  w3o 1083   = wceq 1538  wcel 2111  wne 2987  wral 3106  wrex 3107  cdif 3878  {csn 4525  {cpr 4527  cfv 6324  Vtxcvtx 26789  Edgcedg 26840  VtxDegcvtxdg 27255   FriendGraph cfrgr 28043
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-int 4839  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-1st 7671  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-1o 8085  df-2o 8086  df-oadd 8089  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-fin 8496  df-dju 9314  df-card 9352  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-nn 11626  df-2 11688  df-n0 11886  df-xnn0 11956  df-z 11970  df-uz 12232  df-xadd 12496  df-fz 12886  df-hash 13687  df-edg 26841  df-uhgr 26851  df-ushgr 26852  df-upgr 26875  df-umgr 26876  df-uspgr 26943  df-usgr 26944  df-nbgr 27123  df-vtxdg 27256  df-frgr 28044
This theorem is referenced by:  frgrregorufrg  28111
  Copyright terms: Public domain W3C validator