![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrregorufr | Structured version Visualization version GIF version |
Description: If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
Ref | Expression |
---|---|
frgrregorufr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrregorufr0.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrregorufr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
frgrregorufr | ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrregorufr0.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrregorufr0.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | frgrregorufr0.d | . . 3 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
4 | 1, 2, 3 | frgrregorufr0 30356 | . 2 ⊢ (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
5 | orc 866 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | |
6 | 5 | a1d 25 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
7 | fveq2 6920 | . . . . . . . 8 ⊢ (𝑣 = 𝑎 → (𝐷‘𝑣) = (𝐷‘𝑎)) | |
8 | 7 | neeq1d 3006 | . . . . . . 7 ⊢ (𝑣 = 𝑎 → ((𝐷‘𝑣) ≠ 𝐾 ↔ (𝐷‘𝑎) ≠ 𝐾)) |
9 | 8 | rspcva 3633 | . . . . . 6 ⊢ ((𝑎 ∈ 𝑉 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾) → (𝐷‘𝑎) ≠ 𝐾) |
10 | df-ne 2947 | . . . . . . 7 ⊢ ((𝐷‘𝑎) ≠ 𝐾 ↔ ¬ (𝐷‘𝑎) = 𝐾) | |
11 | pm2.21 123 | . . . . . . 7 ⊢ (¬ (𝐷‘𝑎) = 𝐾 → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) | |
12 | 10, 11 | sylbi 217 | . . . . . 6 ⊢ ((𝐷‘𝑎) ≠ 𝐾 → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
13 | 9, 12 | syl 17 | . . . . 5 ⊢ ((𝑎 ∈ 𝑉 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾) → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
14 | 13 | ancoms 458 | . . . 4 ⊢ ((∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∧ 𝑎 ∈ 𝑉) → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
15 | 14 | rexlimdva 3161 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
16 | olc 867 | . . . 4 ⊢ (∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | |
17 | 16 | a1d 25 | . . 3 ⊢ (∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
18 | 6, 15, 17 | 3jaoi 1428 | . 2 ⊢ ((∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
19 | 4, 18 | syl 17 | 1 ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∨ wo 846 ∨ w3o 1086 = wceq 1537 ∈ wcel 2108 ≠ wne 2946 ∀wral 3067 ∃wrex 3076 ∖ cdif 3973 {csn 4648 {cpr 4650 ‘cfv 6573 Vtxcvtx 29031 Edgcedg 29082 VtxDegcvtxdg 29501 FriendGraph cfrgr 30290 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-oadd 8526 df-er 8763 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-dju 9970 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-xnn0 12626 df-z 12640 df-uz 12904 df-xadd 13176 df-fz 13568 df-hash 14380 df-edg 29083 df-uhgr 29093 df-ushgr 29094 df-upgr 29117 df-umgr 29118 df-uspgr 29185 df-usgr 29186 df-nbgr 29368 df-vtxdg 29502 df-frgr 30291 |
This theorem is referenced by: frgrregorufrg 30358 |
Copyright terms: Public domain | W3C validator |