![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > frgrregorufr | Structured version Visualization version GIF version |
Description: If there is a vertex having degree πΎ for each (nonnegative integer) πΎ in a friendship graph, then either all vertices have degree πΎ or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
Ref | Expression |
---|---|
frgrregorufr0.v | β’ π = (VtxβπΊ) |
frgrregorufr0.e | β’ πΈ = (EdgβπΊ) |
frgrregorufr0.d | β’ π· = (VtxDegβπΊ) |
Ref | Expression |
---|---|
frgrregorufr | β’ (πΊ β FriendGraph β (βπ β π (π·βπ) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrregorufr0.v | . . 3 β’ π = (VtxβπΊ) | |
2 | frgrregorufr0.e | . . 3 β’ πΈ = (EdgβπΊ) | |
3 | frgrregorufr0.d | . . 3 β’ π· = (VtxDegβπΊ) | |
4 | 1, 2, 3 | frgrregorufr0 29566 | . 2 β’ (πΊ β FriendGraph β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π (π·βπ£) β πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ)) |
5 | orc 865 | . . . 4 β’ (βπ£ β π (π·βπ£) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ)) | |
6 | 5 | a1d 25 | . . 3 β’ (βπ£ β π (π·βπ£) = πΎ β (βπ β π (π·βπ) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
7 | fveq2 6888 | . . . . . . . 8 β’ (π£ = π β (π·βπ£) = (π·βπ)) | |
8 | 7 | neeq1d 3000 | . . . . . . 7 β’ (π£ = π β ((π·βπ£) β πΎ β (π·βπ) β πΎ)) |
9 | 8 | rspcva 3610 | . . . . . 6 β’ ((π β π β§ βπ£ β π (π·βπ£) β πΎ) β (π·βπ) β πΎ) |
10 | df-ne 2941 | . . . . . . 7 β’ ((π·βπ) β πΎ β Β¬ (π·βπ) = πΎ) | |
11 | pm2.21 123 | . . . . . . 7 β’ (Β¬ (π·βπ) = πΎ β ((π·βπ) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) | |
12 | 10, 11 | sylbi 216 | . . . . . 6 β’ ((π·βπ) β πΎ β ((π·βπ) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
13 | 9, 12 | syl 17 | . . . . 5 β’ ((π β π β§ βπ£ β π (π·βπ£) β πΎ) β ((π·βπ) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
14 | 13 | ancoms 459 | . . . 4 β’ ((βπ£ β π (π·βπ£) β πΎ β§ π β π) β ((π·βπ) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
15 | 14 | rexlimdva 3155 | . . 3 β’ (βπ£ β π (π·βπ£) β πΎ β (βπ β π (π·βπ) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
16 | olc 866 | . . . 4 β’ (βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ)) | |
17 | 16 | a1d 25 | . . 3 β’ (βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ β (βπ β π (π·βπ) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
18 | 6, 15, 17 | 3jaoi 1427 | . 2 β’ ((βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π (π·βπ£) β πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ) β (βπ β π (π·βπ) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
19 | 4, 18 | syl 17 | 1 β’ (πΊ β FriendGraph β (βπ β π (π·βπ) = πΎ β (βπ£ β π (π·βπ£) = πΎ β¨ βπ£ β π βπ€ β (π β {π£}){π£, π€} β πΈ))) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 396 β¨ wo 845 β¨ w3o 1086 = wceq 1541 β wcel 2106 β wne 2940 βwral 3061 βwrex 3070 β cdif 3944 {csn 4627 {cpr 4629 βcfv 6540 Vtxcvtx 28245 Edgcedg 28296 VtxDegcvtxdg 28711 FriendGraph cfrgr 29500 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-2o 8463 df-oadd 8466 df-er 8699 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-dju 9892 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-xnn0 12541 df-z 12555 df-uz 12819 df-xadd 13089 df-fz 13481 df-hash 14287 df-edg 28297 df-uhgr 28307 df-ushgr 28308 df-upgr 28331 df-umgr 28332 df-uspgr 28399 df-usgr 28400 df-nbgr 28579 df-vtxdg 28712 df-frgr 29501 |
This theorem is referenced by: frgrregorufrg 29568 |
Copyright terms: Public domain | W3C validator |