Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > frgrregorufr | Structured version Visualization version GIF version |
Description: If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.) |
Ref | Expression |
---|---|
frgrregorufr0.v | ⊢ 𝑉 = (Vtx‘𝐺) |
frgrregorufr0.e | ⊢ 𝐸 = (Edg‘𝐺) |
frgrregorufr0.d | ⊢ 𝐷 = (VtxDeg‘𝐺) |
Ref | Expression |
---|---|
frgrregorufr | ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | frgrregorufr0.v | . . 3 ⊢ 𝑉 = (Vtx‘𝐺) | |
2 | frgrregorufr0.e | . . 3 ⊢ 𝐸 = (Edg‘𝐺) | |
3 | frgrregorufr0.d | . . 3 ⊢ 𝐷 = (VtxDeg‘𝐺) | |
4 | 1, 2, 3 | frgrregorufr0 28976 | . 2 ⊢ (𝐺 ∈ FriendGraph → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) |
5 | orc 864 | . . . 4 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | |
6 | 5 | a1d 25 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
7 | fveq2 6825 | . . . . . . . 8 ⊢ (𝑣 = 𝑎 → (𝐷‘𝑣) = (𝐷‘𝑎)) | |
8 | 7 | neeq1d 3000 | . . . . . . 7 ⊢ (𝑣 = 𝑎 → ((𝐷‘𝑣) ≠ 𝐾 ↔ (𝐷‘𝑎) ≠ 𝐾)) |
9 | 8 | rspcva 3568 | . . . . . 6 ⊢ ((𝑎 ∈ 𝑉 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾) → (𝐷‘𝑎) ≠ 𝐾) |
10 | df-ne 2941 | . . . . . . 7 ⊢ ((𝐷‘𝑎) ≠ 𝐾 ↔ ¬ (𝐷‘𝑎) = 𝐾) | |
11 | pm2.21 123 | . . . . . . 7 ⊢ (¬ (𝐷‘𝑎) = 𝐾 → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) | |
12 | 10, 11 | sylbi 216 | . . . . . 6 ⊢ ((𝐷‘𝑎) ≠ 𝐾 → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
13 | 9, 12 | syl 17 | . . . . 5 ⊢ ((𝑎 ∈ 𝑉 ∧ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾) → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
14 | 13 | ancoms 459 | . . . 4 ⊢ ((∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∧ 𝑎 ∈ 𝑉) → ((𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
15 | 14 | rexlimdva 3148 | . . 3 ⊢ (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
16 | olc 865 | . . . 4 ⊢ (∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)) | |
17 | 16 | a1d 25 | . . 3 ⊢ (∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
18 | 6, 15, 17 | 3jaoi 1426 | . 2 ⊢ ((∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∀𝑣 ∈ 𝑉 (𝐷‘𝑣) ≠ 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
19 | 4, 18 | syl 17 | 1 ⊢ (𝐺 ∈ FriendGraph → (∃𝑎 ∈ 𝑉 (𝐷‘𝑎) = 𝐾 → (∀𝑣 ∈ 𝑉 (𝐷‘𝑣) = 𝐾 ∨ ∃𝑣 ∈ 𝑉 ∀𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 396 ∨ wo 844 ∨ w3o 1085 = wceq 1540 ∈ wcel 2105 ≠ wne 2940 ∀wral 3061 ∃wrex 3070 ∖ cdif 3895 {csn 4573 {cpr 4575 ‘cfv 6479 Vtxcvtx 27655 Edgcedg 27706 VtxDegcvtxdg 28121 FriendGraph cfrgr 28910 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-2o 8368 df-oadd 8371 df-er 8569 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-dju 9758 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-n0 12335 df-xnn0 12407 df-z 12421 df-uz 12684 df-xadd 12950 df-fz 13341 df-hash 14146 df-edg 27707 df-uhgr 27717 df-ushgr 27718 df-upgr 27741 df-umgr 27742 df-uspgr 27809 df-usgr 27810 df-nbgr 27989 df-vtxdg 28122 df-frgr 28911 |
This theorem is referenced by: frgrregorufrg 28978 |
Copyright terms: Public domain | W3C validator |