MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregorufr Structured version   Visualization version   GIF version

Theorem frgrregorufr 29567
Description: If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Hypotheses
Ref Expression
frgrregorufr0.v 𝑉 = (Vtxβ€˜πΊ)
frgrregorufr0.e 𝐸 = (Edgβ€˜πΊ)
frgrregorufr0.d 𝐷 = (VtxDegβ€˜πΊ)
Assertion
Ref Expression
frgrregorufr (𝐺 ∈ FriendGraph β†’ (βˆƒπ‘Ž ∈ 𝑉 (π·β€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸)))
Distinct variable groups:   𝑣,𝐷,𝑀   𝑣,𝐸   𝑣,𝐺,𝑀   𝑣,𝐾,𝑀   𝑣,𝑉,𝑀   𝐷,π‘Ž,𝑣   𝐸,π‘Ž   𝐾,π‘Ž   𝑉,π‘Ž,𝑀
Allowed substitution hints:   𝐸(𝑀)   𝐺(π‘Ž)

Proof of Theorem frgrregorufr
StepHypRef Expression
1 frgrregorufr0.v . . 3 𝑉 = (Vtxβ€˜πΊ)
2 frgrregorufr0.e . . 3 𝐸 = (Edgβ€˜πΊ)
3 frgrregorufr0.d . . 3 𝐷 = (VtxDegβ€˜πΊ)
41, 2, 3frgrregorufr0 29566 . 2 (𝐺 ∈ FriendGraph β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) β‰  𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸))
5 orc 865 . . . 4 (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸))
65a1d 25 . . 3 (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 β†’ (βˆƒπ‘Ž ∈ 𝑉 (π·β€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸)))
7 fveq2 6888 . . . . . . . 8 (𝑣 = π‘Ž β†’ (π·β€˜π‘£) = (π·β€˜π‘Ž))
87neeq1d 3000 . . . . . . 7 (𝑣 = π‘Ž β†’ ((π·β€˜π‘£) β‰  𝐾 ↔ (π·β€˜π‘Ž) β‰  𝐾))
98rspcva 3610 . . . . . 6 ((π‘Ž ∈ 𝑉 ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) β‰  𝐾) β†’ (π·β€˜π‘Ž) β‰  𝐾)
10 df-ne 2941 . . . . . . 7 ((π·β€˜π‘Ž) β‰  𝐾 ↔ Β¬ (π·β€˜π‘Ž) = 𝐾)
11 pm2.21 123 . . . . . . 7 (Β¬ (π·β€˜π‘Ž) = 𝐾 β†’ ((π·β€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸)))
1210, 11sylbi 216 . . . . . 6 ((π·β€˜π‘Ž) β‰  𝐾 β†’ ((π·β€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸)))
139, 12syl 17 . . . . 5 ((π‘Ž ∈ 𝑉 ∧ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) β‰  𝐾) β†’ ((π·β€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸)))
1413ancoms 459 . . . 4 ((βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) β‰  𝐾 ∧ π‘Ž ∈ 𝑉) β†’ ((π·β€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸)))
1514rexlimdva 3155 . . 3 (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) β‰  𝐾 β†’ (βˆƒπ‘Ž ∈ 𝑉 (π·β€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸)))
16 olc 866 . . . 4 (βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸))
1716a1d 25 . . 3 (βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸 β†’ (βˆƒπ‘Ž ∈ 𝑉 (π·β€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸)))
186, 15, 173jaoi 1427 . 2 ((βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) β‰  𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸) β†’ (βˆƒπ‘Ž ∈ 𝑉 (π·β€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸)))
194, 18syl 17 1 (𝐺 ∈ FriendGraph β†’ (βˆƒπ‘Ž ∈ 𝑉 (π·β€˜π‘Ž) = 𝐾 β†’ (βˆ€π‘£ ∈ 𝑉 (π·β€˜π‘£) = 𝐾 ∨ βˆƒπ‘£ ∈ 𝑉 βˆ€π‘€ ∈ (𝑉 βˆ– {𝑣}){𝑣, 𝑀} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ∧ wa 396   ∨ wo 845   ∨ w3o 1086   = wceq 1541   ∈ wcel 2106   β‰  wne 2940  βˆ€wral 3061  βˆƒwrex 3070   βˆ– cdif 3944  {csn 4627  {cpr 4629  β€˜cfv 6540  Vtxcvtx 28245  Edgcedg 28296  VtxDegcvtxdg 28711   FriendGraph cfrgr 29500
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-1o 8462  df-2o 8463  df-oadd 8466  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-dju 9892  df-card 9930  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-n0 12469  df-xnn0 12541  df-z 12555  df-uz 12819  df-xadd 13089  df-fz 13481  df-hash 14287  df-edg 28297  df-uhgr 28307  df-ushgr 28308  df-upgr 28331  df-umgr 28332  df-uspgr 28399  df-usgr 28400  df-nbgr 28579  df-vtxdg 28712  df-frgr 29501
This theorem is referenced by:  frgrregorufrg  29568
  Copyright terms: Public domain W3C validator