MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  frgrregorufr Structured version   Visualization version   GIF version

Theorem frgrregorufr 27674
Description: If there is a vertex having degree 𝐾 for each (nonnegative integer) 𝐾 in a friendship graph, then either all vertices have degree 𝐾 or there is a universal friend. This corresponds to claim 2 in [Huneke] p. 2: "Suppose there is a vertex of degree k > 1. ... all vertices have degree k, unless there is a universal friend. ... It follows that G is k-regular, i.e., the degree of every vertex is k". (Contributed by Alexander van der Vekens, 1-Jan-2018.)
Hypotheses
Ref Expression
frgrregorufr0.v 𝑉 = (Vtx‘𝐺)
frgrregorufr0.e 𝐸 = (Edg‘𝐺)
frgrregorufr0.d 𝐷 = (VtxDeg‘𝐺)
Assertion
Ref Expression
frgrregorufr (𝐺 ∈ FriendGraph → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
Distinct variable groups:   𝑣,𝐷,𝑤   𝑣,𝐸   𝑣,𝐺,𝑤   𝑣,𝐾,𝑤   𝑣,𝑉,𝑤   𝐷,𝑎,𝑣   𝐸,𝑎   𝐾,𝑎   𝑉,𝑎,𝑤
Allowed substitution hints:   𝐸(𝑤)   𝐺(𝑎)

Proof of Theorem frgrregorufr
StepHypRef Expression
1 frgrregorufr0.v . . 3 𝑉 = (Vtx‘𝐺)
2 frgrregorufr0.e . . 3 𝐸 = (Edg‘𝐺)
3 frgrregorufr0.d . . 3 𝐷 = (VtxDeg‘𝐺)
41, 2, 3frgrregorufr0 27673 . 2 (𝐺 ∈ FriendGraph → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
5 orc 894 . . . 4 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
65a1d 25 . . 3 (∀𝑣𝑉 (𝐷𝑣) = 𝐾 → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
7 fveq2 6411 . . . . . . . 8 (𝑣 = 𝑎 → (𝐷𝑣) = (𝐷𝑎))
87neeq1d 3030 . . . . . . 7 (𝑣 = 𝑎 → ((𝐷𝑣) ≠ 𝐾 ↔ (𝐷𝑎) ≠ 𝐾))
98rspcva 3495 . . . . . 6 ((𝑎𝑉 ∧ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾) → (𝐷𝑎) ≠ 𝐾)
10 df-ne 2972 . . . . . . 7 ((𝐷𝑎) ≠ 𝐾 ↔ ¬ (𝐷𝑎) = 𝐾)
11 pm2.21 121 . . . . . . 7 (¬ (𝐷𝑎) = 𝐾 → ((𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
1210, 11sylbi 209 . . . . . 6 ((𝐷𝑎) ≠ 𝐾 → ((𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
139, 12syl 17 . . . . 5 ((𝑎𝑉 ∧ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾) → ((𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
1413ancoms 451 . . . 4 ((∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾𝑎𝑉) → ((𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
1514rexlimdva 3212 . . 3 (∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
16 olc 895 . . . 4 (∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸))
1716a1d 25 . . 3 (∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸 → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
186, 15, 173jaoi 1553 . 2 ((∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∀𝑣𝑉 (𝐷𝑣) ≠ 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸) → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
194, 18syl 17 1 (𝐺 ∈ FriendGraph → (∃𝑎𝑉 (𝐷𝑎) = 𝐾 → (∀𝑣𝑉 (𝐷𝑣) = 𝐾 ∨ ∃𝑣𝑉𝑤 ∈ (𝑉 ∖ {𝑣}){𝑣, 𝑤} ∈ 𝐸)))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 385  wo 874  w3o 1107   = wceq 1653  wcel 2157  wne 2971  wral 3089  wrex 3090  cdif 3766  {csn 4368  {cpr 4370  cfv 6101  Vtxcvtx 26231  Edgcedg 26282  VtxDegcvtxdg 26715   FriendGraph cfrgr 27605
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1891  ax-4 1905  ax-5 2006  ax-6 2072  ax-7 2107  ax-8 2159  ax-9 2166  ax-10 2185  ax-11 2200  ax-12 2213  ax-13 2377  ax-ext 2777  ax-rep 4964  ax-sep 4975  ax-nul 4983  ax-pow 5035  ax-pr 5097  ax-un 7183  ax-cnex 10280  ax-resscn 10281  ax-1cn 10282  ax-icn 10283  ax-addcl 10284  ax-addrcl 10285  ax-mulcl 10286  ax-mulrcl 10287  ax-mulcom 10288  ax-addass 10289  ax-mulass 10290  ax-distr 10291  ax-i2m1 10292  ax-1ne0 10293  ax-1rid 10294  ax-rnegex 10295  ax-rrecex 10296  ax-cnre 10297  ax-pre-lttri 10298  ax-pre-lttrn 10299  ax-pre-ltadd 10300  ax-pre-mulgt0 10301
This theorem depends on definitions:  df-bi 199  df-an 386  df-or 875  df-3or 1109  df-3an 1110  df-tru 1657  df-fal 1667  df-ex 1876  df-nf 1880  df-sb 2065  df-mo 2591  df-eu 2609  df-clab 2786  df-cleq 2792  df-clel 2795  df-nfc 2930  df-ne 2972  df-nel 3075  df-ral 3094  df-rex 3095  df-reu 3096  df-rmo 3097  df-rab 3098  df-v 3387  df-sbc 3634  df-csb 3729  df-dif 3772  df-un 3774  df-in 3776  df-ss 3783  df-pss 3785  df-nul 4116  df-if 4278  df-pw 4351  df-sn 4369  df-pr 4371  df-tp 4373  df-op 4375  df-uni 4629  df-int 4668  df-iun 4712  df-br 4844  df-opab 4906  df-mpt 4923  df-tr 4946  df-id 5220  df-eprel 5225  df-po 5233  df-so 5234  df-fr 5271  df-we 5273  df-xp 5318  df-rel 5319  df-cnv 5320  df-co 5321  df-dm 5322  df-rn 5323  df-res 5324  df-ima 5325  df-pred 5898  df-ord 5944  df-on 5945  df-lim 5946  df-suc 5947  df-iota 6064  df-fun 6103  df-fn 6104  df-f 6105  df-f1 6106  df-fo 6107  df-f1o 6108  df-fv 6109  df-riota 6839  df-ov 6881  df-oprab 6882  df-mpt2 6883  df-om 7300  df-1st 7401  df-2nd 7402  df-wrecs 7645  df-recs 7707  df-rdg 7745  df-1o 7799  df-2o 7800  df-oadd 7803  df-er 7982  df-en 8196  df-dom 8197  df-sdom 8198  df-fin 8199  df-card 9051  df-cda 9278  df-pnf 10365  df-mnf 10366  df-xr 10367  df-ltxr 10368  df-le 10369  df-sub 10558  df-neg 10559  df-nn 11313  df-2 11376  df-n0 11581  df-xnn0 11653  df-z 11667  df-uz 11931  df-xadd 12194  df-fz 12581  df-hash 13371  df-edg 26283  df-uhgr 26293  df-ushgr 26294  df-upgr 26317  df-umgr 26318  df-uspgr 26386  df-usgr 26387  df-nbgr 26567  df-vtxdg 26716  df-frgr 27606
This theorem is referenced by:  frgrregorufrg  27675
  Copyright terms: Public domain W3C validator