| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > acnen | Structured version Visualization version GIF version | ||
| Description: The class of choice sets of length 𝐴 is a cardinal invariant. (Contributed by Mario Carneiro, 31-Aug-2015.) |
| Ref | Expression |
|---|---|
| acnen | ⊢ (𝐴 ≈ 𝐵 → AC 𝐴 = AC 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ensym 8951 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐵 ≈ 𝐴) | |
| 2 | endom 8927 | . . . 4 ⊢ (𝐵 ≈ 𝐴 → 𝐵 ≼ 𝐴) | |
| 3 | acndom 9980 | . . . 4 ⊢ (𝐵 ≼ 𝐴 → (𝑥 ∈ AC 𝐴 → 𝑥 ∈ AC 𝐵)) | |
| 4 | 1, 2, 3 | 3syl 18 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ∈ AC 𝐴 → 𝑥 ∈ AC 𝐵)) |
| 5 | endom 8927 | . . . 4 ⊢ (𝐴 ≈ 𝐵 → 𝐴 ≼ 𝐵) | |
| 6 | acndom 9980 | . . . 4 ⊢ (𝐴 ≼ 𝐵 → (𝑥 ∈ AC 𝐵 → 𝑥 ∈ AC 𝐴)) | |
| 7 | 5, 6 | syl 17 | . . 3 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ∈ AC 𝐵 → 𝑥 ∈ AC 𝐴)) |
| 8 | 4, 7 | impbid 212 | . 2 ⊢ (𝐴 ≈ 𝐵 → (𝑥 ∈ AC 𝐴 ↔ 𝑥 ∈ AC 𝐵)) |
| 9 | 8 | eqrdv 2727 | 1 ⊢ (𝐴 ≈ 𝐵 → AC 𝐴 = AC 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 class class class wbr 5102 ≈ cen 8892 ≼ cdom 8893 AC wacn 9867 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-iun 4953 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-er 8648 df-map 8778 df-en 8896 df-dom 8897 df-fin 8899 df-acn 9871 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |