MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulge0b Structured version   Visualization version   GIF version

Theorem mulge0b 11358
Description: A condition for multiplication to be nonnegative. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulge0b ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))

Proof of Theorem mulge0b
StepHypRef Expression
1 ianor 976 . . . . 5 (¬ (𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0))
2 0re 10489 . . . . . . . . . 10 0 ∈ ℝ
3 ltnle 10567 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
42, 3mpan 686 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
54adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
6 ltnle 10567 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
72, 6mpan 686 . . . . . . . . 9 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
87adantl 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
95, 8orbi12d 913 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0)))
109adantr 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0)))
11 ltle 10576 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
122, 11mpan 686 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
1312imp 407 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
1413ad2ant2rl 745 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ 𝐴)
15 remulcl 10468 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
1615adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → (𝐴 · 𝐵) ∈ ℝ)
17 simprl 767 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ (𝐴 · 𝐵))
18 simpll 763 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ)
19 simprr 769 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 < 𝐴)
20 divge0 11357 . . . . . . . . . . 11 ((((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → 0 ≤ ((𝐴 · 𝐵) / 𝐴))
2116, 17, 18, 19, 20syl22anc 835 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ ((𝐴 · 𝐵) / 𝐴))
22 recn 10473 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2322ad2antlr 723 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐵 ∈ ℂ)
24 recn 10473 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2524ad2antrr 722 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ∈ ℂ)
26 gt0ne0 10953 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
2726ad2ant2rl 745 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ≠ 0)
2823, 25, 27divcan3d 11269 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → ((𝐴 · 𝐵) / 𝐴) = 𝐵)
2921, 28breqtrd 4988 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ 𝐵)
3014, 29jca 512 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))
3130expr 457 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (0 < 𝐴 → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
3215adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
33 simprl 767 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ (𝐴 · 𝐵))
34 simplr 765 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
35 simprr 769 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 < 𝐵)
36 divge0 11357 . . . . . . . . . . 11 ((((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ ((𝐴 · 𝐵) / 𝐵))
3732, 33, 34, 35, 36syl22anc 835 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ ((𝐴 · 𝐵) / 𝐵))
3824ad2antrr 722 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
3922ad2antlr 723 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
40 gt0ne0 10953 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
4140ad2ant2l 742 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ≠ 0)
4238, 39, 41divcan4d 11270 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
4337, 42breqtrd 4988 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ 𝐴)
44 ltle 10576 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 → 0 ≤ 𝐵))
452, 44mpan 686 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ 𝐵))
4645imp 407 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 0 ≤ 𝐵)
4746ad2ant2l 742 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ 𝐵)
4843, 47jca 512 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))
4948expr 457 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (0 < 𝐵 → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5031, 49jaod 854 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5110, 50sylbird 261 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
521, 51syl5bi 243 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (¬ (𝐴 ≤ 0 ∧ 𝐵 ≤ 0) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5352orrd 858 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5453ex 413 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))
55 le0neg1 10996 . . . . 5 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
56 le0neg1 10996 . . . . 5 (𝐵 ∈ ℝ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
5755, 56bi2anan9 635 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ↔ (0 ≤ -𝐴 ∧ 0 ≤ -𝐵)))
58 renegcl 10797 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
59 renegcl 10797 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
60 mulge0 11006 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → 0 ≤ (-𝐴 · -𝐵))
6160an4s 656 . . . . . . 7 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (0 ≤ -𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ (-𝐴 · -𝐵))
6261ex 413 . . . . . 6 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (-𝐴 · -𝐵)))
6358, 59, 62syl2an 595 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (-𝐴 · -𝐵)))
64 mul2neg 10927 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
6524, 22, 64syl2an 595 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
6665breq2d 4974 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (-𝐴 · -𝐵) ↔ 0 ≤ (𝐴 · 𝐵)))
6763, 66sylibd 240 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (𝐴 · 𝐵)))
6857, 67sylbid 241 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) → 0 ≤ (𝐴 · 𝐵)))
69 mulge0 11006 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7069an4s 656 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7170ex 413 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
7268, 71jaod 854 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)))
7354, 72impbid 213 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 207  wa 396  wo 842   = wceq 1522  wcel 2081  wne 2984   class class class wbr 4962  (class class class)co 7016  cc 10381  cr 10382  0cc0 10383   · cmul 10388   < clt 10521  cle 10522  -cneg 10718   / cdiv 11145
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1777  ax-4 1791  ax-5 1888  ax-6 1947  ax-7 1992  ax-8 2083  ax-9 2091  ax-10 2112  ax-11 2126  ax-12 2141  ax-13 2344  ax-ext 2769  ax-sep 5094  ax-nul 5101  ax-pow 5157  ax-pr 5221  ax-un 7319  ax-resscn 10440  ax-1cn 10441  ax-icn 10442  ax-addcl 10443  ax-addrcl 10444  ax-mulcl 10445  ax-mulrcl 10446  ax-mulcom 10447  ax-addass 10448  ax-mulass 10449  ax-distr 10450  ax-i2m1 10451  ax-1ne0 10452  ax-1rid 10453  ax-rnegex 10454  ax-rrecex 10455  ax-cnre 10456  ax-pre-lttri 10457  ax-pre-lttrn 10458  ax-pre-ltadd 10459  ax-pre-mulgt0 10460
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1525  df-ex 1762  df-nf 1766  df-sb 2043  df-mo 2576  df-eu 2612  df-clab 2776  df-cleq 2788  df-clel 2863  df-nfc 2935  df-ne 2985  df-nel 3091  df-ral 3110  df-rex 3111  df-reu 3112  df-rmo 3113  df-rab 3114  df-v 3439  df-sbc 3707  df-csb 3812  df-dif 3862  df-un 3864  df-in 3866  df-ss 3874  df-nul 4212  df-if 4382  df-pw 4455  df-sn 4473  df-pr 4475  df-op 4479  df-uni 4746  df-br 4963  df-opab 5025  df-mpt 5042  df-id 5348  df-po 5362  df-so 5363  df-xp 5449  df-rel 5450  df-cnv 5451  df-co 5452  df-dm 5453  df-rn 5454  df-res 5455  df-ima 5456  df-iota 6189  df-fun 6227  df-fn 6228  df-f 6229  df-f1 6230  df-fo 6231  df-f1o 6232  df-fv 6233  df-riota 6977  df-ov 7019  df-oprab 7020  df-mpo 7021  df-er 8139  df-en 8358  df-dom 8359  df-sdom 8360  df-pnf 10523  df-mnf 10524  df-xr 10525  df-ltxr 10526  df-le 10527  df-sub 10719  df-neg 10720  df-div 11146
This theorem is referenced by:  mulle0b  11359
  Copyright terms: Public domain W3C validator