MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulge0b Structured version   Visualization version   GIF version

Theorem mulge0b 11775
Description: A condition for multiplication to be nonnegative. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulge0b ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))

Proof of Theorem mulge0b
StepHypRef Expression
1 ianor 978 . . . . 5 (¬ (𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0))
2 0re 10908 . . . . . . . . . 10 0 ∈ ℝ
3 ltnle 10985 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
42, 3mpan 686 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
54adantr 480 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
6 ltnle 10985 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
72, 6mpan 686 . . . . . . . . 9 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
87adantl 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
95, 8orbi12d 915 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0)))
109adantr 480 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0)))
11 ltle 10994 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
122, 11mpan 686 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
1312imp 406 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
1413ad2ant2rl 745 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ 𝐴)
15 remulcl 10887 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
1615adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → (𝐴 · 𝐵) ∈ ℝ)
17 simprl 767 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ (𝐴 · 𝐵))
18 simpll 763 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ)
19 simprr 769 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 < 𝐴)
20 divge0 11774 . . . . . . . . . . 11 ((((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → 0 ≤ ((𝐴 · 𝐵) / 𝐴))
2116, 17, 18, 19, 20syl22anc 835 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ ((𝐴 · 𝐵) / 𝐴))
22 recn 10892 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2322ad2antlr 723 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐵 ∈ ℂ)
24 recn 10892 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2524ad2antrr 722 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ∈ ℂ)
26 gt0ne0 11370 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
2726ad2ant2rl 745 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ≠ 0)
2823, 25, 27divcan3d 11686 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → ((𝐴 · 𝐵) / 𝐴) = 𝐵)
2921, 28breqtrd 5096 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ 𝐵)
3014, 29jca 511 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))
3130expr 456 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (0 < 𝐴 → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
3215adantr 480 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
33 simprl 767 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ (𝐴 · 𝐵))
34 simplr 765 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
35 simprr 769 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 < 𝐵)
36 divge0 11774 . . . . . . . . . . 11 ((((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ ((𝐴 · 𝐵) / 𝐵))
3732, 33, 34, 35, 36syl22anc 835 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ ((𝐴 · 𝐵) / 𝐵))
3824ad2antrr 722 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
3922ad2antlr 723 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
40 gt0ne0 11370 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
4140ad2ant2l 742 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ≠ 0)
4238, 39, 41divcan4d 11687 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
4337, 42breqtrd 5096 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ 𝐴)
44 ltle 10994 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 → 0 ≤ 𝐵))
452, 44mpan 686 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ 𝐵))
4645imp 406 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 0 ≤ 𝐵)
4746ad2ant2l 742 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ 𝐵)
4843, 47jca 511 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))
4948expr 456 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (0 < 𝐵 → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5031, 49jaod 855 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5110, 50sylbird 259 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
521, 51syl5bi 241 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (¬ (𝐴 ≤ 0 ∧ 𝐵 ≤ 0) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5352orrd 859 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5453ex 412 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))
55 le0neg1 11413 . . . . 5 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
56 le0neg1 11413 . . . . 5 (𝐵 ∈ ℝ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
5755, 56bi2anan9 635 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ↔ (0 ≤ -𝐴 ∧ 0 ≤ -𝐵)))
58 renegcl 11214 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
59 renegcl 11214 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
60 mulge0 11423 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → 0 ≤ (-𝐴 · -𝐵))
6160an4s 656 . . . . . . 7 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (0 ≤ -𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ (-𝐴 · -𝐵))
6261ex 412 . . . . . 6 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (-𝐴 · -𝐵)))
6358, 59, 62syl2an 595 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (-𝐴 · -𝐵)))
64 mul2neg 11344 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
6524, 22, 64syl2an 595 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
6665breq2d 5082 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (-𝐴 · -𝐵) ↔ 0 ≤ (𝐴 · 𝐵)))
6763, 66sylibd 238 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (𝐴 · 𝐵)))
6857, 67sylbid 239 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) → 0 ≤ (𝐴 · 𝐵)))
69 mulge0 11423 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7069an4s 656 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7170ex 412 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
7268, 71jaod 855 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)))
7354, 72impbid 211 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942   class class class wbr 5070  (class class class)co 7255  cc 10800  cr 10801  0cc0 10802   · cmul 10807   < clt 10940  cle 10941  -cneg 11136   / cdiv 11562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-po 5494  df-so 5495  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563
This theorem is referenced by:  mulle0b  11776
  Copyright terms: Public domain W3C validator