MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulge0b Structured version   Visualization version   GIF version

Theorem mulge0b 11172
Description: A condition for multiplication to be nonnegative. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulge0b ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))

Proof of Theorem mulge0b
StepHypRef Expression
1 ianor 995 . . . . 5 (¬ (𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0))
2 0re 10321 . . . . . . . . . 10 0 ∈ ℝ
3 ltnle 10396 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
42, 3mpan 673 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
54adantr 468 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
6 ltnle 10396 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
72, 6mpan 673 . . . . . . . . 9 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
87adantl 469 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
95, 8orbi12d 933 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0)))
109adantr 468 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0)))
11 ltle 10405 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
122, 11mpan 673 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
1312imp 395 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
1413ad2ant2rl 746 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ 𝐴)
15 remulcl 10300 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
1615adantr 468 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → (𝐴 · 𝐵) ∈ ℝ)
17 simprl 778 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ (𝐴 · 𝐵))
18 simpll 774 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ)
19 simprr 780 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 < 𝐴)
20 divge0 11171 . . . . . . . . . . 11 ((((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → 0 ≤ ((𝐴 · 𝐵) / 𝐴))
2116, 17, 18, 19, 20syl22anc 858 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ ((𝐴 · 𝐵) / 𝐴))
22 recn 10305 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2322ad2antlr 709 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐵 ∈ ℂ)
24 recn 10305 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2524ad2antrr 708 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ∈ ℂ)
26 gt0ne0 10772 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
2726ad2ant2rl 746 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ≠ 0)
2823, 25, 27divcan3d 11085 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → ((𝐴 · 𝐵) / 𝐴) = 𝐵)
2921, 28breqtrd 4863 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ 𝐵)
3014, 29jca 503 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))
3130expr 446 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (0 < 𝐴 → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
3215adantr 468 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
33 simprl 778 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ (𝐴 · 𝐵))
34 simplr 776 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
35 simprr 780 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 < 𝐵)
36 divge0 11171 . . . . . . . . . . 11 ((((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ ((𝐴 · 𝐵) / 𝐵))
3732, 33, 34, 35, 36syl22anc 858 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ ((𝐴 · 𝐵) / 𝐵))
3824ad2antrr 708 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
3922ad2antlr 709 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
40 gt0ne0 10772 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
4140ad2ant2l 743 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ≠ 0)
4238, 39, 41divcan4d 11086 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
4337, 42breqtrd 4863 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ 𝐴)
44 ltle 10405 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 → 0 ≤ 𝐵))
452, 44mpan 673 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ 𝐵))
4645imp 395 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 0 ≤ 𝐵)
4746ad2ant2l 743 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ 𝐵)
4843, 47jca 503 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))
4948expr 446 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (0 < 𝐵 → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5031, 49jaod 877 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5110, 50sylbird 251 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
521, 51syl5bi 233 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (¬ (𝐴 ≤ 0 ∧ 𝐵 ≤ 0) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5352orrd 881 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5453ex 399 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))
55 le0neg1 10815 . . . . 5 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
56 le0neg1 10815 . . . . 5 (𝐵 ∈ ℝ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
5755, 56bi2anan9 622 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ↔ (0 ≤ -𝐴 ∧ 0 ≤ -𝐵)))
58 renegcl 10623 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
59 renegcl 10623 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
60 mulge0 10825 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → 0 ≤ (-𝐴 · -𝐵))
6160an4s 642 . . . . . . 7 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (0 ≤ -𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ (-𝐴 · -𝐵))
6261ex 399 . . . . . 6 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (-𝐴 · -𝐵)))
6358, 59, 62syl2an 585 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (-𝐴 · -𝐵)))
64 mul2neg 10748 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
6524, 22, 64syl2an 585 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
6665breq2d 4849 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (-𝐴 · -𝐵) ↔ 0 ≤ (𝐴 · 𝐵)))
6763, 66sylibd 230 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (𝐴 · 𝐵)))
6857, 67sylbid 231 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) → 0 ≤ (𝐴 · 𝐵)))
69 mulge0 10825 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7069an4s 642 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7170ex 399 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
7268, 71jaod 877 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)))
7354, 72impbid 203 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 197  wa 384  wo 865   = wceq 1637  wcel 2155  wne 2974   class class class wbr 4837  (class class class)co 6868  cc 10213  cr 10214  0cc0 10215   · cmul 10220   < clt 10353  cle 10354  -cneg 10546   / cdiv 10963
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1877  ax-4 1894  ax-5 2001  ax-6 2067  ax-7 2103  ax-8 2157  ax-9 2164  ax-10 2184  ax-11 2200  ax-12 2213  ax-13 2419  ax-ext 2781  ax-sep 4968  ax-nul 4977  ax-pow 5029  ax-pr 5090  ax-un 7173  ax-resscn 10272  ax-1cn 10273  ax-icn 10274  ax-addcl 10275  ax-addrcl 10276  ax-mulcl 10277  ax-mulrcl 10278  ax-mulcom 10279  ax-addass 10280  ax-mulass 10281  ax-distr 10282  ax-i2m1 10283  ax-1ne0 10284  ax-1rid 10285  ax-rnegex 10286  ax-rrecex 10287  ax-cnre 10288  ax-pre-lttri 10289  ax-pre-lttrn 10290  ax-pre-ltadd 10291  ax-pre-mulgt0 10292
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 866  df-3or 1101  df-3an 1102  df-tru 1641  df-ex 1860  df-nf 1864  df-sb 2060  df-eu 2633  df-mo 2634  df-clab 2789  df-cleq 2795  df-clel 2798  df-nfc 2933  df-ne 2975  df-nel 3078  df-ral 3097  df-rex 3098  df-reu 3099  df-rmo 3100  df-rab 3101  df-v 3389  df-sbc 3628  df-csb 3723  df-dif 3766  df-un 3768  df-in 3770  df-ss 3777  df-nul 4111  df-if 4274  df-pw 4347  df-sn 4365  df-pr 4367  df-op 4371  df-uni 4624  df-br 4838  df-opab 4900  df-mpt 4917  df-id 5213  df-po 5226  df-so 5227  df-xp 5311  df-rel 5312  df-cnv 5313  df-co 5314  df-dm 5315  df-rn 5316  df-res 5317  df-ima 5318  df-iota 6058  df-fun 6097  df-fn 6098  df-f 6099  df-f1 6100  df-fo 6101  df-f1o 6102  df-fv 6103  df-riota 6829  df-ov 6871  df-oprab 6872  df-mpt2 6873  df-er 7973  df-en 8187  df-dom 8188  df-sdom 8189  df-pnf 10355  df-mnf 10356  df-xr 10357  df-ltxr 10358  df-le 10359  df-sub 10547  df-neg 10548  df-div 10964
This theorem is referenced by:  mulle0b  11173
  Copyright terms: Public domain W3C validator