MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mulge0b Structured version   Visualization version   GIF version

Theorem mulge0b 11845
Description: A condition for multiplication to be nonnegative. (Contributed by Scott Fenton, 25-Jun-2013.)
Assertion
Ref Expression
mulge0b ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))

Proof of Theorem mulge0b
StepHypRef Expression
1 ianor 979 . . . . 5 (¬ (𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0))
2 0re 10977 . . . . . . . . . 10 0 ∈ ℝ
3 ltnle 11054 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
42, 3mpan 687 . . . . . . . . 9 (𝐴 ∈ ℝ → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
54adantr 481 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐴 ↔ ¬ 𝐴 ≤ 0))
6 ltnle 11054 . . . . . . . . . 10 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
72, 6mpan 687 . . . . . . . . 9 (𝐵 ∈ ℝ → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
87adantl 482 . . . . . . . 8 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 ↔ ¬ 𝐵 ≤ 0))
95, 8orbi12d 916 . . . . . . 7 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0)))
109adantr 481 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) ↔ (¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0)))
11 ltle 11063 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐴 ∈ ℝ) → (0 < 𝐴 → 0 ≤ 𝐴))
122, 11mpan 687 . . . . . . . . . . 11 (𝐴 ∈ ℝ → (0 < 𝐴 → 0 ≤ 𝐴))
1312imp 407 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 0 ≤ 𝐴)
1413ad2ant2rl 746 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ 𝐴)
15 remulcl 10956 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴 · 𝐵) ∈ ℝ)
1615adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → (𝐴 · 𝐵) ∈ ℝ)
17 simprl 768 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ (𝐴 · 𝐵))
18 simpll 764 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ∈ ℝ)
19 simprr 770 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 < 𝐴)
20 divge0 11844 . . . . . . . . . . 11 ((((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) ∧ (𝐴 ∈ ℝ ∧ 0 < 𝐴)) → 0 ≤ ((𝐴 · 𝐵) / 𝐴))
2116, 17, 18, 19, 20syl22anc 836 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ ((𝐴 · 𝐵) / 𝐴))
22 recn 10961 . . . . . . . . . . . 12 (𝐵 ∈ ℝ → 𝐵 ∈ ℂ)
2322ad2antlr 724 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐵 ∈ ℂ)
24 recn 10961 . . . . . . . . . . . 12 (𝐴 ∈ ℝ → 𝐴 ∈ ℂ)
2524ad2antrr 723 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ∈ ℂ)
26 gt0ne0 11440 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 0 < 𝐴) → 𝐴 ≠ 0)
2726ad2ant2rl 746 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 𝐴 ≠ 0)
2823, 25, 27divcan3d 11756 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → ((𝐴 · 𝐵) / 𝐴) = 𝐵)
2921, 28breqtrd 5100 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → 0 ≤ 𝐵)
3014, 29jca 512 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐴)) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))
3130expr 457 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (0 < 𝐴 → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
3215adantr 481 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → (𝐴 · 𝐵) ∈ ℝ)
33 simprl 768 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ (𝐴 · 𝐵))
34 simplr 766 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ∈ ℝ)
35 simprr 770 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 < 𝐵)
36 divge0 11844 . . . . . . . . . . 11 ((((𝐴 · 𝐵) ∈ ℝ ∧ 0 ≤ (𝐴 · 𝐵)) ∧ (𝐵 ∈ ℝ ∧ 0 < 𝐵)) → 0 ≤ ((𝐴 · 𝐵) / 𝐵))
3732, 33, 34, 35, 36syl22anc 836 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ ((𝐴 · 𝐵) / 𝐵))
3824ad2antrr 723 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐴 ∈ ℂ)
3922ad2antlr 724 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ∈ ℂ)
40 gt0ne0 11440 . . . . . . . . . . . 12 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 𝐵 ≠ 0)
4140ad2ant2l 743 . . . . . . . . . . 11 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 𝐵 ≠ 0)
4238, 39, 41divcan4d 11757 . . . . . . . . . 10 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → ((𝐴 · 𝐵) / 𝐵) = 𝐴)
4337, 42breqtrd 5100 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ 𝐴)
44 ltle 11063 . . . . . . . . . . . 12 ((0 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 < 𝐵 → 0 ≤ 𝐵))
452, 44mpan 687 . . . . . . . . . . 11 (𝐵 ∈ ℝ → (0 < 𝐵 → 0 ≤ 𝐵))
4645imp 407 . . . . . . . . . 10 ((𝐵 ∈ ℝ ∧ 0 < 𝐵) → 0 ≤ 𝐵)
4746ad2ant2l 743 . . . . . . . . 9 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → 0 ≤ 𝐵)
4843, 47jca 512 . . . . . . . 8 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ (𝐴 · 𝐵) ∧ 0 < 𝐵)) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))
4948expr 457 . . . . . . 7 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (0 < 𝐵 → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5031, 49jaod 856 . . . . . 6 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((0 < 𝐴 ∨ 0 < 𝐵) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5110, 50sylbird 259 . . . . 5 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((¬ 𝐴 ≤ 0 ∨ ¬ 𝐵 ≤ 0) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
521, 51syl5bi 241 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → (¬ (𝐴 ≤ 0 ∧ 𝐵 ≤ 0) → (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5352orrd 860 . . 3 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ 0 ≤ (𝐴 · 𝐵)) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)))
5453ex 413 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))
55 le0neg1 11483 . . . . 5 (𝐴 ∈ ℝ → (𝐴 ≤ 0 ↔ 0 ≤ -𝐴))
56 le0neg1 11483 . . . . 5 (𝐵 ∈ ℝ → (𝐵 ≤ 0 ↔ 0 ≤ -𝐵))
5755, 56bi2anan9 636 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ↔ (0 ≤ -𝐴 ∧ 0 ≤ -𝐵)))
58 renegcl 11284 . . . . . 6 (𝐴 ∈ ℝ → -𝐴 ∈ ℝ)
59 renegcl 11284 . . . . . 6 (𝐵 ∈ ℝ → -𝐵 ∈ ℝ)
60 mulge0 11493 . . . . . . . 8 (((-𝐴 ∈ ℝ ∧ 0 ≤ -𝐴) ∧ (-𝐵 ∈ ℝ ∧ 0 ≤ -𝐵)) → 0 ≤ (-𝐴 · -𝐵))
6160an4s 657 . . . . . . 7 (((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) ∧ (0 ≤ -𝐴 ∧ 0 ≤ -𝐵)) → 0 ≤ (-𝐴 · -𝐵))
6261ex 413 . . . . . 6 ((-𝐴 ∈ ℝ ∧ -𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (-𝐴 · -𝐵)))
6358, 59, 62syl2an 596 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (-𝐴 · -𝐵)))
64 mul2neg 11414 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
6524, 22, 64syl2an 596 . . . . . 6 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (-𝐴 · -𝐵) = (𝐴 · 𝐵))
6665breq2d 5086 . . . . 5 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (-𝐴 · -𝐵) ↔ 0 ≤ (𝐴 · 𝐵)))
6763, 66sylibd 238 . . . 4 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ -𝐴 ∧ 0 ≤ -𝐵) → 0 ≤ (𝐴 · 𝐵)))
6857, 67sylbid 239 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) → 0 ≤ (𝐴 · 𝐵)))
69 mulge0 11493 . . . . 5 (((𝐴 ∈ ℝ ∧ 0 ≤ 𝐴) ∧ (𝐵 ∈ ℝ ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7069an4s 657 . . . 4 (((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) ∧ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵))
7170ex 413 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → ((0 ≤ 𝐴 ∧ 0 ≤ 𝐵) → 0 ≤ (𝐴 · 𝐵)))
7268, 71jaod 856 . 2 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵)) → 0 ≤ (𝐴 · 𝐵)))
7354, 72impbid 211 1 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (0 ≤ (𝐴 · 𝐵) ↔ ((𝐴 ≤ 0 ∧ 𝐵 ≤ 0) ∨ (0 ≤ 𝐴 ∧ 0 ≤ 𝐵))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 844   = wceq 1539  wcel 2106  wne 2943   class class class wbr 5074  (class class class)co 7275  cc 10869  cr 10870  0cc0 10871   · cmul 10876   < clt 11009  cle 11010  -cneg 11206   / cdiv 11632
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-po 5503  df-so 5504  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-er 8498  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-div 11633
This theorem is referenced by:  mulle0b  11846
  Copyright terms: Public domain W3C validator