![]() |
Hilbert Space Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > HSE Home > Th. List > mdslmd4i | Structured version Visualization version GIF version |
Description: Modular pair condition that implies the modular pair property in a sublattice. Lemma 1.5.2 of [MaedaMaeda] p. 2. (Contributed by NM, 24-Dec-2006.) (New usage is discouraged.) |
Ref | Expression |
---|---|
mdslmd.1 | ⊢ 𝐴 ∈ Cℋ |
mdslmd.2 | ⊢ 𝐵 ∈ Cℋ |
mdslmd.3 | ⊢ 𝐶 ∈ Cℋ |
mdslmd.4 | ⊢ 𝐷 ∈ Cℋ |
Ref | Expression |
---|---|
mdslmd4i | ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → 𝐶 𝑀ℋ 𝐷) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simp1 1135 | . . 3 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → 𝐴 𝑀ℋ 𝐵) | |
2 | mdslmd.1 | . . . . . . 7 ⊢ 𝐴 ∈ Cℋ | |
3 | mdslmd.2 | . . . . . . 7 ⊢ 𝐵 ∈ Cℋ | |
4 | 2, 3 | chincli 30981 | . . . . . 6 ⊢ (𝐴 ∩ 𝐵) ∈ Cℋ |
5 | mdslmd.4 | . . . . . 6 ⊢ 𝐷 ∈ Cℋ | |
6 | ssmd1 31832 | . . . . . 6 ⊢ (((𝐴 ∩ 𝐵) ∈ Cℋ ∧ 𝐷 ∈ Cℋ ∧ (𝐴 ∩ 𝐵) ⊆ 𝐷) → (𝐴 ∩ 𝐵) 𝑀ℋ 𝐷) | |
7 | 4, 5, 6 | mp3an12 1450 | . . . . 5 ⊢ ((𝐴 ∩ 𝐵) ⊆ 𝐷 → (𝐴 ∩ 𝐵) 𝑀ℋ 𝐷) |
8 | 7 | adantr 480 | . . . 4 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵) → (𝐴 ∩ 𝐵) 𝑀ℋ 𝐷) |
9 | 8 | 3ad2ant3 1134 | . . 3 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → (𝐴 ∩ 𝐵) 𝑀ℋ 𝐷) |
10 | sslin 4234 | . . . . . . 7 ⊢ (𝐷 ⊆ 𝐵 → (𝐴 ∩ 𝐷) ⊆ (𝐴 ∩ 𝐵)) | |
11 | sstr 3990 | . . . . . . 7 ⊢ (((𝐴 ∩ 𝐷) ⊆ (𝐴 ∩ 𝐵) ∧ (𝐴 ∩ 𝐵) ⊆ 𝐶) → (𝐴 ∩ 𝐷) ⊆ 𝐶) | |
12 | 10, 11 | sylan 579 | . . . . . 6 ⊢ ((𝐷 ⊆ 𝐵 ∧ (𝐴 ∩ 𝐵) ⊆ 𝐶) → (𝐴 ∩ 𝐷) ⊆ 𝐶) |
13 | 12 | ancoms 458 | . . . . 5 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐷 ⊆ 𝐵) → (𝐴 ∩ 𝐷) ⊆ 𝐶) |
14 | 13 | ad2ant2rl 746 | . . . 4 ⊢ ((((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → (𝐴 ∩ 𝐷) ⊆ 𝐶) |
15 | 14 | 3adant1 1129 | . . 3 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → (𝐴 ∩ 𝐷) ⊆ 𝐶) |
16 | simp2r 1199 | . . 3 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → 𝐶 ⊆ 𝐴) | |
17 | mdslmd.3 | . . . 4 ⊢ 𝐶 ∈ Cℋ | |
18 | 2, 3, 5, 17 | mdslmd3i 31853 | . . 3 ⊢ (((𝐴 𝑀ℋ 𝐵 ∧ (𝐴 ∩ 𝐵) 𝑀ℋ 𝐷) ∧ ((𝐴 ∩ 𝐷) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴)) → 𝐶 𝑀ℋ (𝐵 ∩ 𝐷)) |
19 | 1, 9, 15, 16, 18 | syl22anc 836 | . 2 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → 𝐶 𝑀ℋ (𝐵 ∩ 𝐷)) |
20 | sseqin2 4215 | . . . . 5 ⊢ (𝐷 ⊆ 𝐵 ↔ (𝐵 ∩ 𝐷) = 𝐷) | |
21 | 20 | biimpi 215 | . . . 4 ⊢ (𝐷 ⊆ 𝐵 → (𝐵 ∩ 𝐷) = 𝐷) |
22 | 21 | adantl 481 | . . 3 ⊢ (((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵) → (𝐵 ∩ 𝐷) = 𝐷) |
23 | 22 | 3ad2ant3 1134 | . 2 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → (𝐵 ∩ 𝐷) = 𝐷) |
24 | 19, 23 | breqtrd 5174 | 1 ⊢ ((𝐴 𝑀ℋ 𝐵 ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐶 ∧ 𝐶 ⊆ 𝐴) ∧ ((𝐴 ∩ 𝐵) ⊆ 𝐷 ∧ 𝐷 ⊆ 𝐵)) → 𝐶 𝑀ℋ 𝐷) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 ∩ cin 3947 ⊆ wss 3948 class class class wbr 5148 Cℋ cch 30450 𝑀ℋ cmd 30487 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2702 ax-rep 5285 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7728 ax-inf2 9639 ax-cc 10433 ax-cnex 11169 ax-resscn 11170 ax-1cn 11171 ax-icn 11172 ax-addcl 11173 ax-addrcl 11174 ax-mulcl 11175 ax-mulrcl 11176 ax-mulcom 11177 ax-addass 11178 ax-mulass 11179 ax-distr 11180 ax-i2m1 11181 ax-1ne0 11182 ax-1rid 11183 ax-rnegex 11184 ax-rrecex 11185 ax-cnre 11186 ax-pre-lttri 11187 ax-pre-lttrn 11188 ax-pre-ltadd 11189 ax-pre-mulgt0 11190 ax-pre-sup 11191 ax-addf 11192 ax-mulf 11193 ax-hilex 30520 ax-hfvadd 30521 ax-hvcom 30522 ax-hvass 30523 ax-hv0cl 30524 ax-hvaddid 30525 ax-hfvmul 30526 ax-hvmulid 30527 ax-hvmulass 30528 ax-hvdistr1 30529 ax-hvdistr2 30530 ax-hvmul0 30531 ax-hfi 30600 ax-his1 30603 ax-his2 30604 ax-his3 30605 ax-his4 30606 ax-hcompl 30723 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2533 df-eu 2562 df-clab 2709 df-cleq 2723 df-clel 2809 df-nfc 2884 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3375 df-reu 3376 df-rab 3432 df-v 3475 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-tp 4633 df-op 4635 df-uni 4909 df-int 4951 df-iun 4999 df-iin 5000 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-se 5632 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7368 df-ov 7415 df-oprab 7416 df-mpo 7417 df-of 7673 df-om 7859 df-1st 7978 df-2nd 7979 df-supp 8150 df-frecs 8269 df-wrecs 8300 df-recs 8374 df-rdg 8413 df-1o 8469 df-2o 8470 df-oadd 8473 df-omul 8474 df-er 8706 df-map 8825 df-pm 8826 df-ixp 8895 df-en 8943 df-dom 8944 df-sdom 8945 df-fin 8946 df-fsupp 9365 df-fi 9409 df-sup 9440 df-inf 9441 df-oi 9508 df-card 9937 df-acn 9940 df-pnf 11255 df-mnf 11256 df-xr 11257 df-ltxr 11258 df-le 11259 df-sub 11451 df-neg 11452 df-div 11877 df-nn 12218 df-2 12280 df-3 12281 df-4 12282 df-5 12283 df-6 12284 df-7 12285 df-8 12286 df-9 12287 df-n0 12478 df-z 12564 df-dec 12683 df-uz 12828 df-q 12938 df-rp 12980 df-xneg 13097 df-xadd 13098 df-xmul 13099 df-ioo 13333 df-ico 13335 df-icc 13336 df-fz 13490 df-fzo 13633 df-fl 13762 df-seq 13972 df-exp 14033 df-hash 14296 df-cj 15051 df-re 15052 df-im 15053 df-sqrt 15187 df-abs 15188 df-clim 15437 df-rlim 15438 df-sum 15638 df-struct 17085 df-sets 17102 df-slot 17120 df-ndx 17132 df-base 17150 df-ress 17179 df-plusg 17215 df-mulr 17216 df-starv 17217 df-sca 17218 df-vsca 17219 df-ip 17220 df-tset 17221 df-ple 17222 df-ds 17224 df-unif 17225 df-hom 17226 df-cco 17227 df-rest 17373 df-topn 17374 df-0g 17392 df-gsum 17393 df-topgen 17394 df-pt 17395 df-prds 17398 df-xrs 17453 df-qtop 17458 df-imas 17459 df-xps 17461 df-mre 17535 df-mrc 17536 df-acs 17538 df-mgm 18566 df-sgrp 18645 df-mnd 18661 df-submnd 18707 df-mulg 18988 df-cntz 19223 df-cmn 19692 df-psmet 21137 df-xmet 21138 df-met 21139 df-bl 21140 df-mopn 21141 df-fbas 21142 df-fg 21143 df-cnfld 21146 df-top 22617 df-topon 22634 df-topsp 22656 df-bases 22670 df-cld 22744 df-ntr 22745 df-cls 22746 df-nei 22823 df-cn 22952 df-cnp 22953 df-lm 22954 df-haus 23040 df-tx 23287 df-hmeo 23480 df-fil 23571 df-fm 23663 df-flim 23664 df-flf 23665 df-xms 24047 df-ms 24048 df-tms 24049 df-cfil 25004 df-cau 25005 df-cmet 25006 df-grpo 30014 df-gid 30015 df-ginv 30016 df-gdiv 30017 df-ablo 30066 df-vc 30080 df-nv 30113 df-va 30116 df-ba 30117 df-sm 30118 df-0v 30119 df-vs 30120 df-nmcv 30121 df-ims 30122 df-dip 30222 df-ssp 30243 df-ph 30334 df-cbn 30384 df-hnorm 30489 df-hba 30490 df-hvsub 30492 df-hlim 30493 df-hcau 30494 df-sh 30728 df-ch 30742 df-oc 30773 df-ch0 30774 df-shs 30829 df-chj 30831 df-md 31801 |
This theorem is referenced by: csmdsymi 31855 |
Copyright terms: Public domain | W3C validator |