| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > expnegz | Structured version Visualization version GIF version | ||
| Description: Value of a nonzero complex number raised to the negative of an integer power. (Contributed by Mario Carneiro, 4-Jun-2014.) |
| Ref | Expression |
|---|---|
| expnegz | ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elznn0 12560 | . . 3 ⊢ (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0))) | |
| 2 | expneg 14044 | . . . . . . 7 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) | |
| 3 | 2 | ex 412 | . . . . . 6 ⊢ (𝐴 ∈ ℂ → (𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
| 4 | 3 | ad2antrr 726 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → (𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
| 5 | simpll 766 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝐴 ∈ ℂ) | |
| 6 | simprl 770 | . . . . . . . . . 10 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℝ) | |
| 7 | 6 | recnd 11220 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ) |
| 8 | simprr 772 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0) | |
| 9 | expneg2 14045 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) | |
| 10 | 5, 7, 8, 9 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑𝑁) = (1 / (𝐴↑-𝑁))) |
| 11 | 10 | oveq2d 7410 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (1 / (𝐴↑𝑁)) = (1 / (1 / (𝐴↑-𝑁)))) |
| 12 | expcl 14054 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ) | |
| 13 | 12 | ad2ant2rl 749 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) ∈ ℂ) |
| 14 | simplr 768 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝐴 ≠ 0) | |
| 15 | 8 | nn0zd 12571 | . . . . . . . . 9 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ) |
| 16 | expne0i 14069 | . . . . . . . . 9 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) ≠ 0) | |
| 17 | 5, 14, 15, 16 | syl3anc 1373 | . . . . . . . 8 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) ≠ 0) |
| 18 | 13, 17 | recrecd 11971 | . . . . . . 7 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (1 / (1 / (𝐴↑-𝑁))) = (𝐴↑-𝑁)) |
| 19 | 11, 18 | eqtr2d 2766 | . . . . . 6 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
| 20 | 19 | expr 456 | . . . . 5 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → (-𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
| 21 | 4, 20 | jaod 859 | . . . 4 ⊢ (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
| 22 | 21 | expimpd 453 | . . 3 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
| 23 | 1, 22 | biimtrid 242 | . 2 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁)))) |
| 24 | 23 | 3impia 1117 | 1 ⊢ ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴↑𝑁))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∨ wo 847 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2927 (class class class)co 7394 ℂcc 11084 ℝcr 11085 0cc0 11086 1c1 11087 -cneg 11424 / cdiv 11851 ℕ0cn0 12458 ℤcz 12545 ↑cexp 14036 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pow 5328 ax-pr 5395 ax-un 7718 ax-cnex 11142 ax-resscn 11143 ax-1cn 11144 ax-icn 11145 ax-addcl 11146 ax-addrcl 11147 ax-mulcl 11148 ax-mulrcl 11149 ax-mulcom 11150 ax-addass 11151 ax-mulass 11152 ax-distr 11153 ax-i2m1 11154 ax-1ne0 11155 ax-1rid 11156 ax-rnegex 11157 ax-rrecex 11158 ax-cnre 11159 ax-pre-lttri 11160 ax-pre-lttrn 11161 ax-pre-ltadd 11162 ax-pre-mulgt0 11163 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-nel 3032 df-ral 3047 df-rex 3056 df-rmo 3357 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-csb 3871 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-iun 4965 df-br 5116 df-opab 5178 df-mpt 5197 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-pred 6282 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-riota 7351 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-2nd 7978 df-frecs 8269 df-wrecs 8300 df-recs 8349 df-rdg 8387 df-er 8682 df-en 8923 df-dom 8924 df-sdom 8925 df-pnf 11228 df-mnf 11229 df-xr 11230 df-ltxr 11231 df-le 11232 df-sub 11425 df-neg 11426 df-div 11852 df-nn 12198 df-n0 12459 df-z 12546 df-uz 12810 df-seq 13977 df-exp 14037 |
| This theorem is referenced by: expsub 14085 expnegd 14128 cos9thpiminplylem5 33784 |
| Copyright terms: Public domain | W3C validator |