MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnegz Structured version   Visualization version   GIF version

Theorem expnegz 14102
Description: Value of a nonzero complex number raised to the negative of an integer power. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expnegz ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Proof of Theorem expnegz
StepHypRef Expression
1 elznn0 12611 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2 expneg 14075 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
32ex 411 . . . . . 6 (𝐴 ∈ ℂ → (𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
43ad2antrr 724 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → (𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
5 simpll 765 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝐴 ∈ ℂ)
6 simprl 769 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℝ)
76recnd 11279 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
8 simprr 771 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
9 expneg2 14076 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
105, 7, 8, 9syl3anc 1368 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
1110oveq2d 7435 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (1 / (𝐴𝑁)) = (1 / (1 / (𝐴↑-𝑁))))
12 expcl 14085 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ)
1312ad2ant2rl 747 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) ∈ ℂ)
14 simplr 767 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝐴 ≠ 0)
158nn0zd 12622 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
16 expne0i 14100 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) ≠ 0)
175, 14, 15, 16syl3anc 1368 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) ≠ 0)
1813, 17recrecd 12025 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (1 / (1 / (𝐴↑-𝑁))) = (𝐴↑-𝑁))
1911, 18eqtr2d 2766 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
2019expr 455 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → (-𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
214, 20jaod 857 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
2221expimpd 452 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
231, 22biimtrid 241 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
24233impia 1114 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 394  wo 845  w3a 1084   = wceq 1533  wcel 2098  wne 2929  (class class class)co 7419  cc 11143  cr 11144  0cc0 11145  1c1 11146  -cneg 11482   / cdiv 11908  0cn0 12510  cz 12596  cexp 14067
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741  ax-cnex 11201  ax-resscn 11202  ax-1cn 11203  ax-icn 11204  ax-addcl 11205  ax-addrcl 11206  ax-mulcl 11207  ax-mulrcl 11208  ax-mulcom 11209  ax-addass 11210  ax-mulass 11211  ax-distr 11212  ax-i2m1 11213  ax-1ne0 11214  ax-1rid 11215  ax-rnegex 11216  ax-rrecex 11217  ax-cnre 11218  ax-pre-lttri 11219  ax-pre-lttrn 11220  ax-pre-ltadd 11221  ax-pre-mulgt0 11222
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4910  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-pred 6307  df-ord 6374  df-on 6375  df-lim 6376  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-f1 6554  df-fo 6555  df-f1o 6556  df-fv 6557  df-riota 7375  df-ov 7422  df-oprab 7423  df-mpo 7424  df-om 7872  df-2nd 7995  df-frecs 8287  df-wrecs 8318  df-recs 8392  df-rdg 8431  df-er 8725  df-en 8965  df-dom 8966  df-sdom 8967  df-pnf 11287  df-mnf 11288  df-xr 11289  df-ltxr 11290  df-le 11291  df-sub 11483  df-neg 11484  df-div 11909  df-nn 12251  df-n0 12511  df-z 12597  df-uz 12861  df-seq 14008  df-exp 14068
This theorem is referenced by:  expsub  14116  expnegd  14158
  Copyright terms: Public domain W3C validator