MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnegz Structured version   Visualization version   GIF version

Theorem expnegz 13918
Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expnegz ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Proof of Theorem expnegz
StepHypRef Expression
1 elznn0 12435 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2 expneg 13891 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
32ex 413 . . . . . 6 (𝐴 ∈ ℂ → (𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
43ad2antrr 723 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → (𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
5 simpll 764 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝐴 ∈ ℂ)
6 simprl 768 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℝ)
76recnd 11104 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
8 simprr 770 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
9 expneg2 13892 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
105, 7, 8, 9syl3anc 1370 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
1110oveq2d 7353 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (1 / (𝐴𝑁)) = (1 / (1 / (𝐴↑-𝑁))))
12 expcl 13901 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ)
1312ad2ant2rl 746 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) ∈ ℂ)
14 simplr 766 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝐴 ≠ 0)
158nn0zd 12525 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
16 expne0i 13916 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) ≠ 0)
175, 14, 15, 16syl3anc 1370 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) ≠ 0)
1813, 17recrecd 11849 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (1 / (1 / (𝐴↑-𝑁))) = (𝐴↑-𝑁))
1911, 18eqtr2d 2777 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
2019expr 457 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → (-𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
214, 20jaod 856 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
2221expimpd 454 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
231, 22biimtrid 241 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
24233impia 1116 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 844  w3a 1086   = wceq 1540  wcel 2105  wne 2940  (class class class)co 7337  cc 10970  cr 10971  0cc0 10972  1c1 10973  -cneg 11307   / cdiv 11733  0cn0 12334  cz 12420  cexp 13883
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1912  ax-6 1970  ax-7 2010  ax-8 2107  ax-9 2115  ax-10 2136  ax-11 2153  ax-12 2170  ax-ext 2707  ax-sep 5243  ax-nul 5250  ax-pow 5308  ax-pr 5372  ax-un 7650  ax-cnex 11028  ax-resscn 11029  ax-1cn 11030  ax-icn 11031  ax-addcl 11032  ax-addrcl 11033  ax-mulcl 11034  ax-mulrcl 11035  ax-mulcom 11036  ax-addass 11037  ax-mulass 11038  ax-distr 11039  ax-i2m1 11040  ax-1ne0 11041  ax-1rid 11042  ax-rnegex 11043  ax-rrecex 11044  ax-cnre 11045  ax-pre-lttri 11046  ax-pre-lttrn 11047  ax-pre-ltadd 11048  ax-pre-mulgt0 11049
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1781  df-nf 1785  df-sb 2067  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3349  df-reu 3350  df-rab 3404  df-v 3443  df-sbc 3728  df-csb 3844  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3917  df-nul 4270  df-if 4474  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4853  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5176  df-tr 5210  df-id 5518  df-eprel 5524  df-po 5532  df-so 5533  df-fr 5575  df-we 5577  df-xp 5626  df-rel 5627  df-cnv 5628  df-co 5629  df-dm 5630  df-rn 5631  df-res 5632  df-ima 5633  df-pred 6238  df-ord 6305  df-on 6306  df-lim 6307  df-suc 6308  df-iota 6431  df-fun 6481  df-fn 6482  df-f 6483  df-f1 6484  df-fo 6485  df-f1o 6486  df-fv 6487  df-riota 7293  df-ov 7340  df-oprab 7341  df-mpo 7342  df-om 7781  df-2nd 7900  df-frecs 8167  df-wrecs 8198  df-recs 8272  df-rdg 8311  df-er 8569  df-en 8805  df-dom 8806  df-sdom 8807  df-pnf 11112  df-mnf 11113  df-xr 11114  df-ltxr 11115  df-le 11116  df-sub 11308  df-neg 11309  df-div 11734  df-nn 12075  df-n0 12335  df-z 12421  df-uz 12684  df-seq 13823  df-exp 13884
This theorem is referenced by:  expsub  13932  expnegd  13972
  Copyright terms: Public domain W3C validator