MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  expnegz Structured version   Visualization version   GIF version

Theorem expnegz 13276
Description: Value of a complex number raised to a negative power. (Contributed by Mario Carneiro, 4-Jun-2014.)
Assertion
Ref Expression
expnegz ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))

Proof of Theorem expnegz
StepHypRef Expression
1 elznn0 11806 . . 3 (𝑁 ∈ ℤ ↔ (𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)))
2 expneg 13250 . . . . . . 7 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
32ex 405 . . . . . 6 (𝐴 ∈ ℂ → (𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
43ad2antrr 714 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → (𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
5 simpll 755 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝐴 ∈ ℂ)
6 simprl 759 . . . . . . . . . 10 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℝ)
76recnd 10466 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝑁 ∈ ℂ)
8 simprr 761 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℕ0)
9 expneg2 13251 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝑁 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
105, 7, 8, 9syl3anc 1352 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴𝑁) = (1 / (𝐴↑-𝑁)))
1110oveq2d 6990 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (1 / (𝐴𝑁)) = (1 / (1 / (𝐴↑-𝑁))))
12 expcl 13260 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) ∈ ℂ)
1312ad2ant2rl 737 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) ∈ ℂ)
14 simplr 757 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → 𝐴 ≠ 0)
158nn0zd 11896 . . . . . . . . 9 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → -𝑁 ∈ ℤ)
16 expne0i 13274 . . . . . . . . 9 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ -𝑁 ∈ ℤ) → (𝐴↑-𝑁) ≠ 0)
175, 14, 15, 16syl3anc 1352 . . . . . . . 8 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) ≠ 0)
1813, 17recrecd 11212 . . . . . . 7 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (1 / (1 / (𝐴↑-𝑁))) = (𝐴↑-𝑁))
1911, 18eqtr2d 2808 . . . . . 6 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ (𝑁 ∈ ℝ ∧ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
2019expr 449 . . . . 5 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → (-𝑁 ∈ ℕ0 → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
214, 20jaod 846 . . . 4 (((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) ∧ 𝑁 ∈ ℝ) → ((𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0) → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
2221expimpd 446 . . 3 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → ((𝑁 ∈ ℝ ∧ (𝑁 ∈ ℕ0 ∨ -𝑁 ∈ ℕ0)) → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
231, 22syl5bi 234 . 2 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0) → (𝑁 ∈ ℤ → (𝐴↑-𝑁) = (1 / (𝐴𝑁))))
24233impia 1098 1 ((𝐴 ∈ ℂ ∧ 𝐴 ≠ 0 ∧ 𝑁 ∈ ℤ) → (𝐴↑-𝑁) = (1 / (𝐴𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  wo 834  w3a 1069   = wceq 1508  wcel 2051  wne 2960  (class class class)co 6974  cc 10331  cr 10332  0cc0 10333  1c1 10334  -cneg 10669   / cdiv 11096  0cn0 11705  cz 11791  cexp 13242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2743  ax-sep 5056  ax-nul 5063  ax-pow 5115  ax-pr 5182  ax-un 7277  ax-cnex 10389  ax-resscn 10390  ax-1cn 10391  ax-icn 10392  ax-addcl 10393  ax-addrcl 10394  ax-mulcl 10395  ax-mulrcl 10396  ax-mulcom 10397  ax-addass 10398  ax-mulass 10399  ax-distr 10400  ax-i2m1 10401  ax-1ne0 10402  ax-1rid 10403  ax-rnegex 10404  ax-rrecex 10405  ax-cnre 10406  ax-pre-lttri 10407  ax-pre-lttrn 10408  ax-pre-ltadd 10409  ax-pre-mulgt0 10410
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2752  df-cleq 2764  df-clel 2839  df-nfc 2911  df-ne 2961  df-nel 3067  df-ral 3086  df-rex 3087  df-reu 3088  df-rmo 3089  df-rab 3090  df-v 3410  df-sbc 3675  df-csb 3780  df-dif 3825  df-un 3827  df-in 3829  df-ss 3836  df-pss 3838  df-nul 4173  df-if 4345  df-pw 4418  df-sn 4436  df-pr 4438  df-tp 4440  df-op 4442  df-uni 4709  df-iun 4790  df-br 4926  df-opab 4988  df-mpt 5005  df-tr 5027  df-id 5308  df-eprel 5313  df-po 5322  df-so 5323  df-fr 5362  df-we 5364  df-xp 5409  df-rel 5410  df-cnv 5411  df-co 5412  df-dm 5413  df-rn 5414  df-res 5415  df-ima 5416  df-pred 5983  df-ord 6029  df-on 6030  df-lim 6031  df-suc 6032  df-iota 6149  df-fun 6187  df-fn 6188  df-f 6189  df-f1 6190  df-fo 6191  df-f1o 6192  df-fv 6193  df-riota 6935  df-ov 6977  df-oprab 6978  df-mpo 6979  df-om 7395  df-2nd 7500  df-wrecs 7748  df-recs 7810  df-rdg 7848  df-er 8087  df-en 8305  df-dom 8306  df-sdom 8307  df-pnf 10474  df-mnf 10475  df-xr 10476  df-ltxr 10477  df-le 10478  df-sub 10670  df-neg 10671  df-div 11097  df-nn 11438  df-n0 11706  df-z 11792  df-uz 12057  df-seq 13183  df-exp 13243
This theorem is referenced by:  expsub  13290  expnegd  13330
  Copyright terms: Public domain W3C validator