MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  elfzomelpfzo Structured version   Visualization version   GIF version

Theorem elfzomelpfzo 13676
Description: An integer increased by another integer is an element of a half-open integer range if and only if the integer is contained in the half-open integer range with bounds decreased by the other integer. (Contributed by Alexander van der Vekens, 30-Mar-2018.)
Assertion
Ref Expression
elfzomelpfzo (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))

Proof of Theorem elfzomelpfzo
StepHypRef Expression
1 zsubcl 12522 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑀𝐿) ∈ ℤ)
21ad2ant2rl 749 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑀𝐿) ∈ ℤ)
3 simpl 482 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℤ)
43adantr 480 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑀 ∈ ℤ)
52, 42thd 265 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑀𝐿) ∈ ℤ ↔ 𝑀 ∈ ℤ))
6 simpl 482 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℤ)
76adantl 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐾 ∈ ℤ)
8 zaddcl 12520 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝐾 + 𝐿) ∈ ℤ)
98adantl 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 + 𝐿) ∈ ℤ)
107, 92thd 265 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ℤ ↔ (𝐾 + 𝐿) ∈ ℤ))
11 zre 12481 . . . . . . . 8 (𝑀 ∈ ℤ → 𝑀 ∈ ℝ)
1211adantr 480 . . . . . . 7 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑀 ∈ ℝ)
1312adantr 480 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑀 ∈ ℝ)
14 zre 12481 . . . . . . . 8 (𝐿 ∈ ℤ → 𝐿 ∈ ℝ)
1514adantl 481 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐿 ∈ ℝ)
1615adantl 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐿 ∈ ℝ)
17 zre 12481 . . . . . . . 8 (𝐾 ∈ ℤ → 𝐾 ∈ ℝ)
1817adantr 480 . . . . . . 7 ((𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ) → 𝐾 ∈ ℝ)
1918adantl 481 . . . . . 6 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝐾 ∈ ℝ)
2013, 16, 19lesubaddd 11723 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑀𝐿) ≤ 𝐾𝑀 ≤ (𝐾 + 𝐿)))
215, 10, 203anbi123d 1438 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (((𝑀𝐿) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀𝐿) ≤ 𝐾) ↔ (𝑀 ∈ ℤ ∧ (𝐾 + 𝐿) ∈ ℤ ∧ 𝑀 ≤ (𝐾 + 𝐿))))
22 eluz2 12746 . . . 4 (𝐾 ∈ (ℤ‘(𝑀𝐿)) ↔ ((𝑀𝐿) ∈ ℤ ∧ 𝐾 ∈ ℤ ∧ (𝑀𝐿) ≤ 𝐾))
23 eluz2 12746 . . . 4 ((𝐾 + 𝐿) ∈ (ℤ𝑀) ↔ (𝑀 ∈ ℤ ∧ (𝐾 + 𝐿) ∈ ℤ ∧ 𝑀 ≤ (𝐾 + 𝐿)))
2421, 22, 233bitr4g 314 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ (ℤ‘(𝑀𝐿)) ↔ (𝐾 + 𝐿) ∈ (ℤ𝑀)))
25 zsubcl 12522 . . . . 5 ((𝑁 ∈ ℤ ∧ 𝐿 ∈ ℤ) → (𝑁𝐿) ∈ ℤ)
2625ad2ant2l 746 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝑁𝐿) ∈ ℤ)
27 simplr 768 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑁 ∈ ℤ)
2826, 272thd 265 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝑁𝐿) ∈ ℤ ↔ 𝑁 ∈ ℤ))
29 zre 12481 . . . . . . 7 (𝑁 ∈ ℤ → 𝑁 ∈ ℝ)
3029adantl 481 . . . . . 6 ((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) → 𝑁 ∈ ℝ)
3130adantr 480 . . . . 5 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → 𝑁 ∈ ℝ)
3219, 16, 31ltaddsubd 11726 . . . 4 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐾 + 𝐿) < 𝑁𝐾 < (𝑁𝐿)))
3332bicomd 223 . . 3 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 < (𝑁𝐿) ↔ (𝐾 + 𝐿) < 𝑁))
3424, 28, 333anbi123d 1438 . 2 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → ((𝐾 ∈ (ℤ‘(𝑀𝐿)) ∧ (𝑁𝐿) ∈ ℤ ∧ 𝐾 < (𝑁𝐿)) ↔ ((𝐾 + 𝐿) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 + 𝐿) < 𝑁)))
35 elfzo2 13566 . 2 (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 ∈ (ℤ‘(𝑀𝐿)) ∧ (𝑁𝐿) ∈ ℤ ∧ 𝐾 < (𝑁𝐿)))
36 elfzo2 13566 . 2 ((𝐾 + 𝐿) ∈ (𝑀..^𝑁) ↔ ((𝐾 + 𝐿) ∈ (ℤ𝑀) ∧ 𝑁 ∈ ℤ ∧ (𝐾 + 𝐿) < 𝑁))
3734, 35, 363bitr4g 314 1 (((𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ) ∧ (𝐾 ∈ ℤ ∧ 𝐿 ∈ ℤ)) → (𝐾 ∈ ((𝑀𝐿)..^(𝑁𝐿)) ↔ (𝐾 + 𝐿) ∈ (𝑀..^𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086  wcel 2113   class class class wbr 5095  cfv 6488  (class class class)co 7354  cr 11014   + caddc 11018   < clt 11155  cle 11156  cmin 11353  cz 12477  cuz 12740  ..^cfzo 13558
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7676  ax-cnex 11071  ax-resscn 11072  ax-1cn 11073  ax-icn 11074  ax-addcl 11075  ax-addrcl 11076  ax-mulcl 11077  ax-mulrcl 11078  ax-mulcom 11079  ax-addass 11080  ax-mulass 11081  ax-distr 11082  ax-i2m1 11083  ax-1ne0 11084  ax-1rid 11085  ax-rnegex 11086  ax-rrecex 11087  ax-cnre 11088  ax-pre-lttri 11089  ax-pre-lttrn 11090  ax-pre-ltadd 11091  ax-pre-mulgt0 11092
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-nel 3034  df-ral 3049  df-rex 3058  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6255  df-ord 6316  df-on 6317  df-lim 6318  df-suc 6319  df-iota 6444  df-fun 6490  df-fn 6491  df-f 6492  df-f1 6493  df-fo 6494  df-f1o 6495  df-fv 6496  df-riota 7311  df-ov 7357  df-oprab 7358  df-mpo 7359  df-om 7805  df-1st 7929  df-2nd 7930  df-frecs 8219  df-wrecs 8250  df-recs 8299  df-rdg 8337  df-er 8630  df-en 8878  df-dom 8879  df-sdom 8880  df-pnf 11157  df-mnf 11158  df-xr 11159  df-ltxr 11160  df-le 11161  df-sub 11355  df-neg 11356  df-nn 12135  df-n0 12391  df-z 12478  df-uz 12741  df-fz 13412  df-fzo 13559
This theorem is referenced by:  pfxccatin12lem2a  14638  clwwlkccatlem  29973
  Copyright terms: Public domain W3C validator