| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > add4d | Structured version Visualization version GIF version | ||
| Description: Rearrangement of 4 terms in a sum. (Contributed by Mario Carneiro, 27-May-2016.) |
| Ref | Expression |
|---|---|
| addd.1 | ⊢ (𝜑 → 𝐴 ∈ ℂ) |
| addd.2 | ⊢ (𝜑 → 𝐵 ∈ ℂ) |
| addd.3 | ⊢ (𝜑 → 𝐶 ∈ ℂ) |
| add4d.4 | ⊢ (𝜑 → 𝐷 ∈ ℂ) |
| Ref | Expression |
|---|---|
| add4d | ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | addd.1 | . 2 ⊢ (𝜑 → 𝐴 ∈ ℂ) | |
| 2 | addd.2 | . 2 ⊢ (𝜑 → 𝐵 ∈ ℂ) | |
| 3 | addd.3 | . 2 ⊢ (𝜑 → 𝐶 ∈ ℂ) | |
| 4 | add4d.4 | . 2 ⊢ (𝜑 → 𝐷 ∈ ℂ) | |
| 5 | add4 11402 | . 2 ⊢ (((𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ) ∧ (𝐶 ∈ ℂ ∧ 𝐷 ∈ ℂ)) → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) | |
| 6 | 1, 2, 3, 4, 5 | syl22anc 838 | 1 ⊢ (𝜑 → ((𝐴 + 𝐵) + (𝐶 + 𝐷)) = ((𝐴 + 𝐶) + (𝐵 + 𝐷))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 (class class class)co 7390 ℂcc 11073 + caddc 11078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-po 5549 df-so 5550 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-ov 7393 df-er 8674 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-ltxr 11220 |
| This theorem is referenced by: binom3 14196 readd 15099 imadd 15107 bhmafibid1cn 15439 bhmafibid2cn 15440 bpoly4 16032 efi4p 16112 sadcaddlem 16434 sadadd2lem 16436 4sqlem11 16933 vdwlem6 16964 cphipval2 25148 ovolunlem1a 25404 uniioombllem3 25493 itgadd 25733 itgmulc2 25742 tanarg 26535 binom4 26767 dquart 26770 quart1 26773 axeuclidlem 28896 axcontlem8 28905 golem1 32207 archiabllem2c 33156 madjusmdetlem4 33827 itgaddnclem2 37680 itgaddnc 37681 itgmulc2nc 37689 dvnmul 45948 stoweidlem13 46018 sge0xaddlem1 46438 opoeALTV 47688 itsclc0xyqsolr 48762 |
| Copyright terms: Public domain | W3C validator |