MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  asclfn Structured version   Visualization version   GIF version

Theorem asclfn 21766
Description: Unconditional functionality of the algebra scalar lifting function. (Contributed by Mario Carneiro, 9-Mar-2015.)
Hypotheses
Ref Expression
asclfn.a 𝐴 = (algSc‘𝑊)
asclfn.f 𝐹 = (Scalar‘𝑊)
asclfn.k 𝐾 = (Base‘𝐹)
Assertion
Ref Expression
asclfn 𝐴 Fn 𝐾

Proof of Theorem asclfn
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 ovex 7402 . 2 (𝑥( ·𝑠𝑊)(1r𝑊)) ∈ V
2 asclfn.a . . 3 𝐴 = (algSc‘𝑊)
3 asclfn.f . . 3 𝐹 = (Scalar‘𝑊)
4 asclfn.k . . 3 𝐾 = (Base‘𝐹)
5 eqid 2729 . . 3 ( ·𝑠𝑊) = ( ·𝑠𝑊)
6 eqid 2729 . . 3 (1r𝑊) = (1r𝑊)
72, 3, 4, 5, 6asclfval 21764 . 2 𝐴 = (𝑥𝐾 ↦ (𝑥( ·𝑠𝑊)(1r𝑊)))
81, 7fnmpti 6643 1 𝐴 Fn 𝐾
Colors of variables: wff setvar class
Syntax hints:   = wceq 1540   Fn wfn 6494  cfv 6499  (class class class)co 7369  Basecbs 17155  Scalarcsca 17199   ·𝑠 cvsca 17200  1rcur 20066  algSccascl 21737
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-1cn 11102  ax-addcl 11104
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-ov 7372  df-om 7823  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-nn 12163  df-slot 17128  df-ndx 17140  df-base 17156  df-ascl 21740
This theorem is referenced by:  issubassa2  21777  subrgascl  21949
  Copyright terms: Public domain W3C validator