![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asclfn | Structured version Visualization version GIF version |
Description: Unconditional functionality of the algebra scalars function. (Contributed by Mario Carneiro, 9-Mar-2015.) |
Ref | Expression |
---|---|
asclfn.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclfn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclfn.k | ⊢ 𝐾 = (Base‘𝐹) |
Ref | Expression |
---|---|
asclfn | ⊢ 𝐴 Fn 𝐾 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovex 6910 | . 2 ⊢ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊)) ∈ V | |
2 | asclfn.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
3 | asclfn.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | asclfn.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
5 | eqid 2799 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
6 | eqid 2799 | . . 3 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
7 | 2, 3, 4, 5, 6 | asclfval 19657 | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
8 | 1, 7 | fnmpti 6233 | 1 ⊢ 𝐴 Fn 𝐾 |
Colors of variables: wff setvar class |
Syntax hints: = wceq 1653 Fn wfn 6096 ‘cfv 6101 (class class class)co 6878 Basecbs 16184 Scalarcsca 16270 ·𝑠 cvsca 16271 1rcur 18817 algSccascl 19634 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-rep 4964 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-reu 3096 df-rab 3098 df-v 3387 df-sbc 3634 df-csb 3729 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-nul 4116 df-if 4278 df-sn 4369 df-pr 4371 df-op 4375 df-uni 4629 df-iun 4712 df-br 4844 df-opab 4906 df-mpt 4923 df-id 5220 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-ov 6881 df-slot 16188 df-base 16190 df-ascl 19637 |
This theorem is referenced by: issubassa2 19668 subrgascl 19820 |
Copyright terms: Public domain | W3C validator |