| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclfn | Structured version Visualization version GIF version | ||
| Description: Unconditional functionality of the algebra scalar lifting function. (Contributed by Mario Carneiro, 9-Mar-2015.) |
| Ref | Expression |
|---|---|
| asclfn.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclfn.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| asclfn.k | ⊢ 𝐾 = (Base‘𝐹) |
| Ref | Expression |
|---|---|
| asclfn | ⊢ 𝐴 Fn 𝐾 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovex 7388 | . 2 ⊢ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊)) ∈ V | |
| 2 | asclfn.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
| 3 | asclfn.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | asclfn.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | eqid 2733 | . . 3 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
| 6 | eqid 2733 | . . 3 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
| 7 | 2, 3, 4, 5, 6 | asclfval 21825 | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
| 8 | 1, 7 | fnmpti 6632 | 1 ⊢ 𝐴 Fn 𝐾 |
| Colors of variables: wff setvar class |
| Syntax hints: = wceq 1541 Fn wfn 6484 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 Scalarcsca 17171 ·𝑠 cvsca 17172 1rcur 20107 algSccascl 21798 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-1cn 11075 ax-addcl 11077 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-ov 7358 df-om 7806 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-nn 12137 df-slot 17100 df-ndx 17112 df-base 17128 df-ascl 21801 |
| This theorem is referenced by: issubassa2 21839 subrgascl 22012 |
| Copyright terms: Public domain | W3C validator |