Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asclf | Structured version Visualization version GIF version |
Description: The algebra scalars function is a function into the base set. (Contributed by Mario Carneiro, 4-Jul-2015.) |
Ref | Expression |
---|---|
asclf.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclf.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclf.r | ⊢ (𝜑 → 𝑊 ∈ Ring) |
asclf.l | ⊢ (𝜑 → 𝑊 ∈ LMod) |
asclf.k | ⊢ 𝐾 = (Base‘𝐹) |
asclf.b | ⊢ 𝐵 = (Base‘𝑊) |
Ref | Expression |
---|---|
asclf | ⊢ (𝜑 → 𝐴:𝐾⟶𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | asclf.l | . . . 4 ⊢ (𝜑 → 𝑊 ∈ LMod) | |
2 | 1 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → 𝑊 ∈ LMod) |
3 | simpr 484 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → 𝑥 ∈ 𝐾) | |
4 | asclf.r | . . . . 5 ⊢ (𝜑 → 𝑊 ∈ Ring) | |
5 | asclf.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑊) | |
6 | eqid 2738 | . . . . . 6 ⊢ (1r‘𝑊) = (1r‘𝑊) | |
7 | 5, 6 | ringidcl 19722 | . . . . 5 ⊢ (𝑊 ∈ Ring → (1r‘𝑊) ∈ 𝐵) |
8 | 4, 7 | syl 17 | . . . 4 ⊢ (𝜑 → (1r‘𝑊) ∈ 𝐵) |
9 | 8 | adantr 480 | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (1r‘𝑊) ∈ 𝐵) |
10 | asclf.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
11 | eqid 2738 | . . . 4 ⊢ ( ·𝑠 ‘𝑊) = ( ·𝑠 ‘𝑊) | |
12 | asclf.k | . . . 4 ⊢ 𝐾 = (Base‘𝐹) | |
13 | 5, 10, 11, 12 | lmodvscl 20055 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ 𝑥 ∈ 𝐾 ∧ (1r‘𝑊) ∈ 𝐵) → (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊)) ∈ 𝐵) |
14 | 2, 3, 9, 13 | syl3anc 1369 | . 2 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝐾) → (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊)) ∈ 𝐵) |
15 | asclf.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
16 | 15, 10, 12, 11, 6 | asclfval 20993 | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥( ·𝑠 ‘𝑊)(1r‘𝑊))) |
17 | 14, 16 | fmptd 6970 | 1 ⊢ (𝜑 → 𝐴:𝐾⟶𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ⟶wf 6414 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 Scalarcsca 16891 ·𝑠 cvsca 16892 1rcur 19652 Ringcrg 19698 LModclmod 20038 algSccascl 20969 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-plusg 16901 df-0g 17069 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mgp 19636 df-ur 19653 df-ring 19700 df-lmod 20040 df-ascl 20972 |
This theorem is referenced by: asclghm 20997 ascldimul 21002 aspval2 21012 mplasclf 21183 subrgasclcl 21185 mpfconst 21221 ply1sclf 21366 cply1coe0bi 21381 lply1binomsc 21388 evls1sca 21399 evl1scvarpw 21439 mat2pmatbas 21783 chpscmat 21899 chpscmatgsumbin 21901 |
Copyright terms: Public domain | W3C validator |