Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asclval | Structured version Visualization version GIF version |
Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015.) |
Ref | Expression |
---|---|
asclfval.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclfval.k | ⊢ 𝐾 = (Base‘𝐹) |
asclfval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
asclfval.o | ⊢ 1 = (1r‘𝑊) |
Ref | Expression |
---|---|
asclval | ⊢ (𝑋 ∈ 𝐾 → (𝐴‘𝑋) = (𝑋 · 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7320 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 1 ) = (𝑋 · 1 )) | |
2 | asclfval.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
3 | asclfval.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | asclfval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
5 | asclfval.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | asclfval.o | . . 3 ⊢ 1 = (1r‘𝑊) | |
7 | 2, 3, 4, 5, 6 | asclfval 21154 | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
8 | ovex 7346 | . 2 ⊢ (𝑋 · 1 ) ∈ V | |
9 | 1, 7, 8 | fvmpt 6912 | 1 ⊢ (𝑋 ∈ 𝐾 → (𝐴‘𝑋) = (𝑋 · 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2105 ‘cfv 6463 (class class class)co 7313 Basecbs 16979 Scalarcsca 17032 ·𝑠 cvsca 17033 1rcur 19804 algSccascl 21130 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2708 ax-rep 5222 ax-sep 5236 ax-nul 5243 ax-pow 5301 ax-pr 5365 ax-un 7626 ax-cnex 10997 ax-1cn 10999 ax-addcl 11001 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3351 df-rab 3405 df-v 3443 df-sbc 3726 df-csb 3842 df-dif 3899 df-un 3901 df-in 3903 df-ss 3913 df-pss 3915 df-nul 4267 df-if 4470 df-pw 4545 df-sn 4570 df-pr 4572 df-op 4576 df-uni 4849 df-iun 4937 df-br 5086 df-opab 5148 df-mpt 5169 df-tr 5203 df-id 5505 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5560 df-we 5562 df-xp 5611 df-rel 5612 df-cnv 5613 df-co 5614 df-dm 5615 df-rn 5616 df-res 5617 df-ima 5618 df-pred 6222 df-ord 6289 df-on 6290 df-lim 6291 df-suc 6292 df-iota 6415 df-fun 6465 df-fn 6466 df-f 6467 df-f1 6468 df-fo 6469 df-f1o 6470 df-fv 6471 df-ov 7316 df-om 7756 df-2nd 7875 df-frecs 8142 df-wrecs 8173 df-recs 8247 df-rdg 8286 df-nn 12044 df-slot 16950 df-ndx 16962 df-base 16980 df-ascl 21133 |
This theorem is referenced by: asclghm 21158 ascl0 21159 ascl1 21160 asclmul1 21161 asclmul2 21162 ascldimul 21163 mplascl 21343 ply1scltm 21523 ply1scl0 21532 ply1scl1 21534 lply1binomsc 21549 pmatcollpwscmatlem1 22009 cayhamlem2 22104 asclmulg 31771 ply1sclrmsm 45983 |
Copyright terms: Public domain | W3C validator |