Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > asclval | Structured version Visualization version GIF version |
Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015.) |
Ref | Expression |
---|---|
asclfval.a | ⊢ 𝐴 = (algSc‘𝑊) |
asclfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
asclfval.k | ⊢ 𝐾 = (Base‘𝐹) |
asclfval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
asclfval.o | ⊢ 1 = (1r‘𝑊) |
Ref | Expression |
---|---|
asclval | ⊢ (𝑋 ∈ 𝐾 → (𝐴‘𝑋) = (𝑋 · 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7220 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 1 ) = (𝑋 · 1 )) | |
2 | asclfval.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
3 | asclfval.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
4 | asclfval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
5 | asclfval.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
6 | asclfval.o | . . 3 ⊢ 1 = (1r‘𝑊) | |
7 | 2, 3, 4, 5, 6 | asclfval 20838 | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
8 | ovex 7246 | . 2 ⊢ (𝑋 · 1 ) ∈ V | |
9 | 1, 7, 8 | fvmpt 6818 | 1 ⊢ (𝑋 ∈ 𝐾 → (𝐴‘𝑋) = (𝑋 · 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1543 ∈ wcel 2110 ‘cfv 6380 (class class class)co 7213 Basecbs 16760 Scalarcsca 16805 ·𝑠 cvsca 16806 1rcur 19516 algSccascl 20814 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-rep 5179 ax-sep 5192 ax-nul 5199 ax-pow 5258 ax-pr 5322 ax-un 7523 ax-cnex 10785 ax-1cn 10787 ax-addcl 10789 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ne 2941 df-ral 3066 df-rex 3067 df-reu 3068 df-rab 3070 df-v 3410 df-sbc 3695 df-csb 3812 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-pss 3885 df-nul 4238 df-if 4440 df-pw 4515 df-sn 4542 df-pr 4544 df-tp 4546 df-op 4548 df-uni 4820 df-iun 4906 df-br 5054 df-opab 5116 df-mpt 5136 df-tr 5162 df-id 5455 df-eprel 5460 df-po 5468 df-so 5469 df-fr 5509 df-we 5511 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-res 5563 df-ima 5564 df-pred 6160 df-ord 6216 df-on 6217 df-lim 6218 df-suc 6219 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-om 7645 df-wrecs 8047 df-recs 8108 df-rdg 8146 df-nn 11831 df-slot 16735 df-ndx 16745 df-base 16761 df-ascl 20817 |
This theorem is referenced by: asclghm 20842 ascl0 20843 ascl1 20844 asclmul1 20845 asclmul2 20846 ascldimul 20847 ascldimulOLD 20848 mplascl 21022 ply1scltm 21202 ply1scl0 21211 ply1scl1 21213 lply1binomsc 21228 pmatcollpwscmatlem1 21686 cayhamlem2 21781 asclmulg 31380 ply1sclrmsm 45397 |
Copyright terms: Public domain | W3C validator |