| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclval | Structured version Visualization version GIF version | ||
| Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| asclfval.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| asclfval.k | ⊢ 𝐾 = (Base‘𝐹) |
| asclfval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| asclfval.o | ⊢ 1 = (1r‘𝑊) |
| Ref | Expression |
|---|---|
| asclval | ⊢ (𝑋 ∈ 𝐾 → (𝐴‘𝑋) = (𝑋 · 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7359 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 1 ) = (𝑋 · 1 )) | |
| 2 | asclfval.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
| 3 | asclfval.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | asclfval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | asclfval.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | asclfval.o | . . 3 ⊢ 1 = (1r‘𝑊) | |
| 7 | 2, 3, 4, 5, 6 | asclfval 21818 | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
| 8 | ovex 7385 | . 2 ⊢ (𝑋 · 1 ) ∈ V | |
| 9 | 1, 7, 8 | fvmpt 6935 | 1 ⊢ (𝑋 ∈ 𝐾 → (𝐴‘𝑋) = (𝑋 · 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 Scalarcsca 17166 ·𝑠 cvsca 17167 1rcur 20101 algSccascl 21791 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-1cn 11071 ax-addcl 11073 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7355 df-om 7803 df-2nd 7928 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-nn 12133 df-slot 17095 df-ndx 17107 df-base 17123 df-ascl 21794 |
| This theorem is referenced by: asclghm 21822 ascl0 21823 ascl1 21824 asclmul1 21825 asclmul2 21826 ascldimul 21827 asclmulg 21841 psrascl 21917 mplascl 22000 psdascl 22084 ply1scltm 22196 ply1scl0OLD 22206 ply1scl1OLD 22209 lply1binomsc 22227 asclply1subcl 22290 pmatcollpwscmatlem1 22705 cayhamlem2 22800 ressasclcl 33541 ply1sclrmsm 48508 asclelbasALT 49131 |
| Copyright terms: Public domain | W3C validator |