| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > asclval | Structured version Visualization version GIF version | ||
| Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015.) |
| Ref | Expression |
|---|---|
| asclfval.a | ⊢ 𝐴 = (algSc‘𝑊) |
| asclfval.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| asclfval.k | ⊢ 𝐾 = (Base‘𝐹) |
| asclfval.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| asclfval.o | ⊢ 1 = (1r‘𝑊) |
| Ref | Expression |
|---|---|
| asclval | ⊢ (𝑋 ∈ 𝐾 → (𝐴‘𝑋) = (𝑋 · 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oveq1 7360 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 · 1 ) = (𝑋 · 1 )) | |
| 2 | asclfval.a | . . 3 ⊢ 𝐴 = (algSc‘𝑊) | |
| 3 | asclfval.f | . . 3 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 4 | asclfval.k | . . 3 ⊢ 𝐾 = (Base‘𝐹) | |
| 5 | asclfval.s | . . 3 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 6 | asclfval.o | . . 3 ⊢ 1 = (1r‘𝑊) | |
| 7 | 2, 3, 4, 5, 6 | asclfval 21804 | . 2 ⊢ 𝐴 = (𝑥 ∈ 𝐾 ↦ (𝑥 · 1 )) |
| 8 | ovex 7386 | . 2 ⊢ (𝑋 · 1 ) ∈ V | |
| 9 | 1, 7, 8 | fvmpt 6934 | 1 ⊢ (𝑋 ∈ 𝐾 → (𝐴‘𝑋) = (𝑋 · 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∈ wcel 2109 ‘cfv 6486 (class class class)co 7353 Basecbs 17138 Scalarcsca 17182 ·𝑠 cvsca 17183 1rcur 20084 algSccascl 21777 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-1cn 11086 ax-addcl 11088 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-ov 7356 df-om 7807 df-2nd 7932 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-nn 12147 df-slot 17111 df-ndx 17123 df-base 17139 df-ascl 21780 |
| This theorem is referenced by: asclghm 21808 ascl0 21809 ascl1 21810 asclmul1 21811 asclmul2 21812 ascldimul 21813 asclmulg 21827 psrascl 21904 mplascl 21987 psdascl 22071 ply1scltm 22183 ply1scl0OLD 22193 ply1scl1OLD 22196 lply1binomsc 22214 asclply1subcl 22277 pmatcollpwscmatlem1 22692 cayhamlem2 22787 ressasclcl 33516 ply1sclrmsm 48369 asclelbasALT 48992 |
| Copyright terms: Public domain | W3C validator |