![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > asclval | Structured version Visualization version GIF version |
Description: Value of a mapped algebra scalar. (Contributed by Mario Carneiro, 8-Mar-2015.) |
Ref | Expression |
---|---|
asclfval.a | β’ π΄ = (algScβπ) |
asclfval.f | β’ πΉ = (Scalarβπ) |
asclfval.k | β’ πΎ = (BaseβπΉ) |
asclfval.s | β’ Β· = ( Β·π βπ) |
asclfval.o | β’ 1 = (1rβπ) |
Ref | Expression |
---|---|
asclval | β’ (π β πΎ β (π΄βπ) = (π Β· 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 7365 | . 2 β’ (π₯ = π β (π₯ Β· 1 ) = (π Β· 1 )) | |
2 | asclfval.a | . . 3 β’ π΄ = (algScβπ) | |
3 | asclfval.f | . . 3 β’ πΉ = (Scalarβπ) | |
4 | asclfval.k | . . 3 β’ πΎ = (BaseβπΉ) | |
5 | asclfval.s | . . 3 β’ Β· = ( Β·π βπ) | |
6 | asclfval.o | . . 3 β’ 1 = (1rβπ) | |
7 | 2, 3, 4, 5, 6 | asclfval 21298 | . 2 β’ π΄ = (π₯ β πΎ β¦ (π₯ Β· 1 )) |
8 | ovex 7391 | . 2 β’ (π Β· 1 ) β V | |
9 | 1, 7, 8 | fvmpt 6949 | 1 β’ (π β πΎ β (π΄βπ) = (π Β· 1 )) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1542 β wcel 2107 βcfv 6497 (class class class)co 7358 Basecbs 17088 Scalarcsca 17141 Β·π cvsca 17142 1rcur 19918 algSccascl 21274 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5243 ax-sep 5257 ax-nul 5264 ax-pow 5321 ax-pr 5385 ax-un 7673 ax-cnex 11112 ax-1cn 11114 ax-addcl 11116 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3353 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3930 df-nul 4284 df-if 4488 df-pw 4563 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-iun 4957 df-br 5107 df-opab 5169 df-mpt 5190 df-tr 5224 df-id 5532 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5589 df-we 5591 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-pred 6254 df-ord 6321 df-on 6322 df-lim 6323 df-suc 6324 df-iota 6449 df-fun 6499 df-fn 6500 df-f 6501 df-f1 6502 df-fo 6503 df-f1o 6504 df-fv 6505 df-ov 7361 df-om 7804 df-2nd 7923 df-frecs 8213 df-wrecs 8244 df-recs 8318 df-rdg 8357 df-nn 12159 df-slot 17059 df-ndx 17071 df-base 17089 df-ascl 21277 |
This theorem is referenced by: asclghm 21302 ascl0 21303 ascl1 21304 asclmul1 21305 asclmul2 21306 ascldimul 21307 mplascl 21488 ply1scltm 21668 ply1scl0 21677 ply1scl1 21679 lply1binomsc 21694 pmatcollpwscmatlem1 22154 cayhamlem2 22249 asclmulg 32311 asclply1subcl 32330 ply1sclrmsm 46550 |
Copyright terms: Public domain | W3C validator |