Mathbox for Scott Fenton |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > noetasuplem1 | Structured version Visualization version GIF version |
Description: Lemma for noeta 33873. Establish that our final surreal really is a surreal. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
noetasuplem.1 | ⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
noetasuplem.2 | ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) |
Ref | Expression |
---|---|
noetasuplem1 | ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noetasuplem.2 | . 2 ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) | |
2 | noetasuplem.1 | . . . . 5 ⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | |
3 | 2 | nosupno 33833 | . . . 4 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V) → 𝑆 ∈ No ) |
4 | 3 | 3adant3 1130 | . . 3 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 ∈ No ) |
5 | bdayimaon 33823 | . . . 4 ⊢ (𝐵 ∈ V → suc ∪ ( bday “ 𝐵) ∈ On) | |
6 | 5 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → suc ∪ ( bday “ 𝐵) ∈ On) |
7 | 1oex 8280 | . . . . 5 ⊢ 1o ∈ V | |
8 | 7 | prid1 4695 | . . . 4 ⊢ 1o ∈ {1o, 2o} |
9 | 8 | noextendseq 33797 | . . 3 ⊢ ((𝑆 ∈ No ∧ suc ∪ ( bday “ 𝐵) ∈ On) → (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ∈ No ) |
10 | 4, 6, 9 | syl2anc 583 | . 2 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ∈ No ) |
11 | 1, 10 | eqeltrid 2843 | 1 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1539 ∈ wcel 2108 {cab 2715 ∀wral 3063 ∃wrex 3064 Vcvv 3422 ∖ cdif 3880 ∪ cun 3881 ⊆ wss 3883 ifcif 4456 {csn 4558 〈cop 4564 ∪ cuni 4836 class class class wbr 5070 ↦ cmpt 5153 × cxp 5578 dom cdm 5580 ↾ cres 5582 “ cima 5583 Oncon0 6251 suc csuc 6253 ℩cio 6374 ‘cfv 6418 ℩crio 7211 1oc1o 8260 2oc2o 8261 No csur 33770 <s cslt 33771 bday cbday 33772 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-1o 8267 df-2o 8268 df-no 33773 df-slt 33774 df-bday 33775 |
This theorem is referenced by: noetasuplem3 33865 noetasuplem4 33866 noetalem1 33871 |
Copyright terms: Public domain | W3C validator |