| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noetasuplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for noeta 27690. Establish that our final surreal really is a surreal. (Contributed by Scott Fenton, 6-Dec-2021.) |
| Ref | Expression |
|---|---|
| noetasuplem.1 | ⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| noetasuplem.2 | ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) |
| Ref | Expression |
|---|---|
| noetasuplem1 | ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noetasuplem.2 | . 2 ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) | |
| 2 | noetasuplem.1 | . . . . 5 ⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | |
| 3 | 2 | nosupno 27650 | . . . 4 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V) → 𝑆 ∈ No ) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 ∈ No ) |
| 5 | bdayimaon 27640 | . . . 4 ⊢ (𝐵 ∈ V → suc ∪ ( bday “ 𝐵) ∈ On) | |
| 6 | 5 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → suc ∪ ( bday “ 𝐵) ∈ On) |
| 7 | 1oex 8422 | . . . . 5 ⊢ 1o ∈ V | |
| 8 | 7 | prid1 4722 | . . . 4 ⊢ 1o ∈ {1o, 2o} |
| 9 | 8 | noextendseq 27614 | . . 3 ⊢ ((𝑆 ∈ No ∧ suc ∪ ( bday “ 𝐵) ∈ On) → (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ∈ No ) |
| 10 | 4, 6, 9 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ∈ No ) |
| 11 | 1, 10 | eqeltrid 2832 | 1 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 {cab 2707 ∀wral 3044 ∃wrex 3053 Vcvv 3444 ∖ cdif 3908 ∪ cun 3909 ⊆ wss 3911 ifcif 4484 {csn 4585 〈cop 4591 ∪ cuni 4867 class class class wbr 5102 ↦ cmpt 5183 × cxp 5629 dom cdm 5631 ↾ cres 5633 “ cima 5634 Oncon0 6321 suc csuc 6323 ℩cio 6451 ‘cfv 6500 ℩crio 7326 1oc1o 8405 2oc2o 8406 No csur 27586 <s cslt 27587 bday cbday 27588 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7692 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6324 df-on 6325 df-suc 6327 df-iota 6453 df-fun 6502 df-fn 6503 df-f 6504 df-fo 6506 df-fv 6508 df-riota 7327 df-1o 8412 df-2o 8413 df-no 27589 df-slt 27590 df-bday 27591 |
| This theorem is referenced by: noetasuplem3 27682 noetasuplem4 27683 noetalem1 27688 |
| Copyright terms: Public domain | W3C validator |