![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > noetasuplem1 | Structured version Visualization version GIF version |
Description: Lemma for noeta 27650. Establish that our final surreal really is a surreal. (Contributed by Scott Fenton, 6-Dec-2021.) |
Ref | Expression |
---|---|
noetasuplem.1 | ⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
noetasuplem.2 | ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) |
Ref | Expression |
---|---|
noetasuplem1 | ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 ∈ No ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | noetasuplem.2 | . 2 ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) | |
2 | noetasuplem.1 | . . . . 5 ⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | |
3 | 2 | nosupno 27610 | . . . 4 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V) → 𝑆 ∈ No ) |
4 | 3 | 3adant3 1130 | . . 3 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 ∈ No ) |
5 | bdayimaon 27600 | . . . 4 ⊢ (𝐵 ∈ V → suc ∪ ( bday “ 𝐵) ∈ On) | |
6 | 5 | 3ad2ant3 1133 | . . 3 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → suc ∪ ( bday “ 𝐵) ∈ On) |
7 | 1oex 8488 | . . . . 5 ⊢ 1o ∈ V | |
8 | 7 | prid1 4762 | . . . 4 ⊢ 1o ∈ {1o, 2o} |
9 | 8 | noextendseq 27574 | . . 3 ⊢ ((𝑆 ∈ No ∧ suc ∪ ( bday “ 𝐵) ∈ On) → (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ∈ No ) |
10 | 4, 6, 9 | syl2anc 583 | . 2 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ∈ No ) |
11 | 1, 10 | eqeltrid 2832 | 1 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 ∈ No ) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1534 ∈ wcel 2099 {cab 2704 ∀wral 3056 ∃wrex 3065 Vcvv 3469 ∖ cdif 3941 ∪ cun 3942 ⊆ wss 3944 ifcif 4524 {csn 4624 ⟨cop 4630 ∪ cuni 4903 class class class wbr 5142 ↦ cmpt 5225 × cxp 5670 dom cdm 5672 ↾ cres 5674 “ cima 5675 Oncon0 6363 suc csuc 6365 ℩cio 6492 ‘cfv 6542 ℩crio 7369 1oc1o 8471 2oc2o 8472 No csur 27547 <s cslt 27548 bday cbday 27549 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2164 ax-ext 2698 ax-rep 5279 ax-sep 5293 ax-nul 5300 ax-pr 5423 ax-un 7732 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2705 df-cleq 2719 df-clel 2805 df-nfc 2880 df-ne 2936 df-ral 3057 df-rex 3066 df-rmo 3371 df-reu 3372 df-rab 3428 df-v 3471 df-sbc 3775 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3963 df-nul 4319 df-if 4525 df-pw 4600 df-sn 4625 df-pr 4627 df-tp 4629 df-op 4631 df-uni 4904 df-iun 4993 df-br 5143 df-opab 5205 df-mpt 5226 df-tr 5260 df-id 5570 df-eprel 5576 df-po 5584 df-so 5585 df-fr 5627 df-we 5629 df-xp 5678 df-rel 5679 df-cnv 5680 df-co 5681 df-dm 5682 df-rn 5683 df-res 5684 df-ima 5685 df-ord 6366 df-on 6367 df-suc 6369 df-iota 6494 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7370 df-1o 8478 df-2o 8479 df-no 27550 df-slt 27551 df-bday 27552 |
This theorem is referenced by: noetasuplem3 27642 noetasuplem4 27643 noetalem1 27648 |
Copyright terms: Public domain | W3C validator |