MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetasuplem1 Structured version   Visualization version   GIF version

Theorem noetasuplem1 27640
Description: Lemma for noeta 27650. Establish that our final surreal really is a surreal. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypotheses
Ref Expression
noetasuplem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetasuplem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetasuplem1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetasuplem1
StepHypRef Expression
1 noetasuplem.2 . 2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
2 noetasuplem.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32nosupno 27610 . . . 4 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
433adant3 1130 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 No )
5 bdayimaon 27600 . . . 4 (𝐵 ∈ V → suc ( bday 𝐵) ∈ On)
653ad2ant3 1133 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → suc ( bday 𝐵) ∈ On)
7 1oex 8488 . . . . 5 1o ∈ V
87prid1 4762 . . . 4 1o ∈ {1o, 2o}
98noextendseq 27574 . . 3 ((𝑆 No ∧ suc ( bday 𝐵) ∈ On) → (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ∈ No )
104, 6, 9syl2anc 583 . 2 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ∈ No )
111, 10eqeltrid 2832 1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  {cab 2704  wral 3056  wrex 3065  Vcvv 3469  cdif 3941  cun 3942  wss 3944  ifcif 4524  {csn 4624  cop 4630   cuni 4903   class class class wbr 5142  cmpt 5225   × cxp 5670  dom cdm 5672  cres 5674  cima 5675  Oncon0 6363  suc csuc 6365  cio 6492  cfv 6542  crio 7369  1oc1o 8471  2oc2o 8472   No csur 27547   <s cslt 27548   bday cbday 27549
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2164  ax-ext 2698  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pr 5423  ax-un 7732
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2936  df-ral 3057  df-rex 3066  df-rmo 3371  df-reu 3372  df-rab 3428  df-v 3471  df-sbc 3775  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3963  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-tp 4629  df-op 4631  df-uni 4904  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5570  df-eprel 5576  df-po 5584  df-so 5585  df-fr 5627  df-we 5629  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-ord 6366  df-on 6367  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7370  df-1o 8478  df-2o 8479  df-no 27550  df-slt 27551  df-bday 27552
This theorem is referenced by:  noetasuplem3  27642  noetasuplem4  27643  noetalem1  27648
  Copyright terms: Public domain W3C validator