| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > noetasuplem1 | Structured version Visualization version GIF version | ||
| Description: Lemma for noeta 27682. Establish that our final surreal really is a surreal. (Contributed by Scott Fenton, 6-Dec-2021.) |
| Ref | Expression |
|---|---|
| noetasuplem.1 | ⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) |
| noetasuplem.2 | ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) |
| Ref | Expression |
|---|---|
| noetasuplem1 | ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 ∈ No ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | noetasuplem.2 | . 2 ⊢ 𝑍 = (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) | |
| 2 | noetasuplem.1 | . . . . 5 ⊢ 𝑆 = if(∃𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦, ((℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦) ∪ {〈dom (℩𝑥 ∈ 𝐴 ∀𝑦 ∈ 𝐴 ¬ 𝑥 <s 𝑦), 2o〉}), (𝑔 ∈ {𝑦 ∣ ∃𝑢 ∈ 𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥∃𝑢 ∈ 𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣 ∈ 𝐴 (¬ 𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢‘𝑔) = 𝑥)))) | |
| 3 | 2 | nosupno 27642 | . . . 4 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V) → 𝑆 ∈ No ) |
| 4 | 3 | 3adant3 1132 | . . 3 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 ∈ No ) |
| 5 | bdayimaon 27632 | . . . 4 ⊢ (𝐵 ∈ V → suc ∪ ( bday “ 𝐵) ∈ On) | |
| 6 | 5 | 3ad2ant3 1135 | . . 3 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → suc ∪ ( bday “ 𝐵) ∈ On) |
| 7 | 1oex 8395 | . . . . 5 ⊢ 1o ∈ V | |
| 8 | 7 | prid1 4712 | . . . 4 ⊢ 1o ∈ {1o, 2o} |
| 9 | 8 | noextendseq 27606 | . . 3 ⊢ ((𝑆 ∈ No ∧ suc ∪ ( bday “ 𝐵) ∈ On) → (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ∈ No ) |
| 10 | 4, 6, 9 | syl2anc 584 | . 2 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ∪ ((suc ∪ ( bday “ 𝐵) ∖ dom 𝑆) × {1o})) ∈ No ) |
| 11 | 1, 10 | eqeltrid 2835 | 1 ⊢ ((𝐴 ⊆ No ∧ 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 ∈ No ) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 {cab 2709 ∀wral 3047 ∃wrex 3056 Vcvv 3436 ∖ cdif 3894 ∪ cun 3895 ⊆ wss 3897 ifcif 4472 {csn 4573 〈cop 4579 ∪ cuni 4856 class class class wbr 5089 ↦ cmpt 5170 × cxp 5612 dom cdm 5614 ↾ cres 5616 “ cima 5617 Oncon0 6306 suc csuc 6308 ℩cio 6435 ‘cfv 6481 ℩crio 7302 1oc1o 8378 2oc2o 8379 No csur 27578 <s cslt 27579 bday cbday 27580 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-ord 6309 df-on 6310 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-fo 6487 df-fv 6489 df-riota 7303 df-1o 8385 df-2o 8386 df-no 27581 df-slt 27582 df-bday 27583 |
| This theorem is referenced by: noetasuplem3 27674 noetasuplem4 27675 noetalem1 27680 |
| Copyright terms: Public domain | W3C validator |