MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  noetasuplem1 Structured version   Visualization version   GIF version

Theorem noetasuplem1 27712
Description: Lemma for noeta 27722. Establish that our final surreal really is a surreal. (Contributed by Scott Fenton, 6-Dec-2021.)
Hypotheses
Ref Expression
noetasuplem.1 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
noetasuplem.2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
Assertion
Ref Expression
noetasuplem1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
Distinct variable group:   𝐴,𝑔,𝑢,𝑣,𝑥,𝑦
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑆(𝑥,𝑦,𝑣,𝑢,𝑔)   𝑍(𝑥,𝑦,𝑣,𝑢,𝑔)

Proof of Theorem noetasuplem1
StepHypRef Expression
1 noetasuplem.2 . 2 𝑍 = (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o}))
2 noetasuplem.1 . . . . 5 𝑆 = if(∃𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦, ((𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦) ∪ {⟨dom (𝑥𝐴𝑦𝐴 ¬ 𝑥 <s 𝑦), 2o⟩}), (𝑔 ∈ {𝑦 ∣ ∃𝑢𝐴 (𝑦 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑦) = (𝑣 ↾ suc 𝑦)))} ↦ (℩𝑥𝑢𝐴 (𝑔 ∈ dom 𝑢 ∧ ∀𝑣𝐴𝑣 <s 𝑢 → (𝑢 ↾ suc 𝑔) = (𝑣 ↾ suc 𝑔)) ∧ (𝑢𝑔) = 𝑥))))
32nosupno 27682 . . . 4 ((𝐴 No 𝐴 ∈ V) → 𝑆 No )
433adant3 1129 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑆 No )
5 bdayimaon 27672 . . . 4 (𝐵 ∈ V → suc ( bday 𝐵) ∈ On)
653ad2ant3 1132 . . 3 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → suc ( bday 𝐵) ∈ On)
7 1oex 8497 . . . . 5 1o ∈ V
87prid1 4768 . . . 4 1o ∈ {1o, 2o}
98noextendseq 27646 . . 3 ((𝑆 No ∧ suc ( bday 𝐵) ∈ On) → (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ∈ No )
104, 6, 9syl2anc 582 . 2 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → (𝑆 ∪ ((suc ( bday 𝐵) ∖ dom 𝑆) × {1o})) ∈ No )
111, 10eqeltrid 2829 1 ((𝐴 No 𝐴 ∈ V ∧ 𝐵 ∈ V) → 𝑍 No )
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 394  w3a 1084   = wceq 1533  wcel 2098  {cab 2702  wral 3050  wrex 3059  Vcvv 3461  cdif 3941  cun 3942  wss 3944  ifcif 4530  {csn 4630  cop 4636   cuni 4909   class class class wbr 5149  cmpt 5232   × cxp 5676  dom cdm 5678  cres 5680  cima 5681  Oncon0 6371  suc csuc 6373  cio 6499  cfv 6549  crio 7374  1oc1o 8480  2oc2o 8481   No csur 27618   <s cslt 27619   bday cbday 27620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5286  ax-sep 5300  ax-nul 5307  ax-pow 5365  ax-pr 5429  ax-un 7741
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2930  df-ral 3051  df-rex 3060  df-rmo 3363  df-reu 3364  df-rab 3419  df-v 3463  df-sbc 3774  df-csb 3890  df-dif 3947  df-un 3949  df-in 3951  df-ss 3961  df-pss 3964  df-nul 4323  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-tp 4635  df-op 4637  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5576  df-eprel 5582  df-po 5590  df-so 5591  df-fr 5633  df-we 5635  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-ord 6374  df-on 6375  df-suc 6377  df-iota 6501  df-fun 6551  df-fn 6552  df-f 6553  df-fo 6555  df-fv 6557  df-riota 7375  df-1o 8487  df-2o 8488  df-no 27621  df-slt 27622  df-bday 27623
This theorem is referenced by:  noetasuplem3  27714  noetasuplem4  27715  noetalem1  27720
  Copyright terms: Public domain W3C validator