MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cardennn Structured version   Visualization version   GIF version

Theorem cardennn 10016
Description: If 𝐴 is equinumerous to a natural number, then that number is its cardinal. (Contributed by Mario Carneiro, 11-Jan-2013.)
Assertion
Ref Expression
cardennn ((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Ο‰) β†’ (cardβ€˜π΄) = 𝐡)

Proof of Theorem cardennn
StepHypRef Expression
1 carden2b 10000 . 2 (𝐴 β‰ˆ 𝐡 β†’ (cardβ€˜π΄) = (cardβ€˜π΅))
2 cardnn 9996 . 2 (𝐡 ∈ Ο‰ β†’ (cardβ€˜π΅) = 𝐡)
31, 2sylan9eq 2788 1 ((𝐴 β‰ˆ 𝐡 ∧ 𝐡 ∈ Ο‰) β†’ (cardβ€˜π΄) = 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   = wceq 1533   ∈ wcel 2098   class class class wbr 5152  β€˜cfv 6553  Ο‰com 7878   β‰ˆ cen 8969  cardccrd 9968
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2699  ax-sep 5303  ax-nul 5310  ax-pow 5369  ax-pr 5433  ax-un 7748
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-reu 3375  df-rab 3431  df-v 3475  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4327  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4913  df-int 4954  df-br 5153  df-opab 5215  df-mpt 5236  df-tr 5270  df-id 5580  df-eprel 5586  df-po 5594  df-so 5595  df-fr 5637  df-we 5639  df-xp 5688  df-rel 5689  df-cnv 5690  df-co 5691  df-dm 5692  df-rn 5693  df-res 5694  df-ima 5695  df-ord 6377  df-on 6378  df-lim 6379  df-suc 6380  df-iota 6505  df-fun 6555  df-fn 6556  df-f 6557  df-f1 6558  df-fo 6559  df-f1o 6560  df-fv 6561  df-om 7879  df-1o 8495  df-er 8733  df-en 8973  df-dom 8974  df-sdom 8975  df-fin 8976  df-card 9972
This theorem is referenced by:  dif1card  10043  fz1isolem  14464  unidifsnel  32360  unidifsnne  32361
  Copyright terms: Public domain W3C validator