Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0aa Structured version   Visualization version   GIF version

Theorem cdleme0aa 39739
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme0.l ≀ = (leβ€˜πΎ)
cdleme0.j ∨ = (joinβ€˜πΎ)
cdleme0.m ∧ = (meetβ€˜πΎ)
cdleme0.a 𝐴 = (Atomsβ€˜πΎ)
cdleme0.h 𝐻 = (LHypβ€˜πΎ)
cdleme0.u π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
cdleme0.b 𝐡 = (Baseβ€˜πΎ)
Assertion
Ref Expression
cdleme0aa (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ π‘ˆ ∈ 𝐡)

Proof of Theorem cdleme0aa
StepHypRef Expression
1 cdleme0.u . 2 π‘ˆ = ((𝑃 ∨ 𝑄) ∧ π‘Š)
2 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝐾 ∈ HL)
32hllatd 38892 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝐾 ∈ Lat)
4 cdleme0.b . . . . . 6 𝐡 = (Baseβ€˜πΎ)
5 cdleme0.a . . . . . 6 𝐴 = (Atomsβ€˜πΎ)
64, 5atbase 38817 . . . . 5 (𝑃 ∈ 𝐴 β†’ 𝑃 ∈ 𝐡)
763ad2ant2 1131 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑃 ∈ 𝐡)
84, 5atbase 38817 . . . . 5 (𝑄 ∈ 𝐴 β†’ 𝑄 ∈ 𝐡)
983ad2ant3 1132 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ 𝑄 ∈ 𝐡)
10 cdleme0.j . . . . 5 ∨ = (joinβ€˜πΎ)
114, 10latjcl 18430 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐡 ∧ 𝑄 ∈ 𝐡) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
123, 7, 9, 11syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ (𝑃 ∨ 𝑄) ∈ 𝐡)
13 simp1r 1195 . . . 4 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ π‘Š ∈ 𝐻)
14 cdleme0.h . . . . 5 𝐻 = (LHypβ€˜πΎ)
154, 14lhpbase 39527 . . . 4 (π‘Š ∈ 𝐻 β†’ π‘Š ∈ 𝐡)
1613, 15syl 17 . . 3 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ π‘Š ∈ 𝐡)
17 cdleme0.m . . . 4 ∧ = (meetβ€˜πΎ)
184, 17latmcl 18431 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐡 ∧ π‘Š ∈ 𝐡) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ 𝐡)
193, 12, 16, 18syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ ((𝑃 ∨ 𝑄) ∧ π‘Š) ∈ 𝐡)
201, 19eqeltrid 2829 1 (((𝐾 ∈ HL ∧ π‘Š ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) β†’ π‘ˆ ∈ 𝐡)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 394   ∧ w3a 1084   = wceq 1533   ∈ wcel 2098  β€˜cfv 6543  (class class class)co 7416  Basecbs 17179  lecple 17239  joincjn 18302  meetcmee 18303  Latclat 18422  Atomscatm 38791  HLchlt 38878  LHypclh 39513
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-rep 5280  ax-sep 5294  ax-nul 5301  ax-pow 5359  ax-pr 5423  ax-un 7738
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-ral 3052  df-rex 3061  df-rmo 3364  df-reu 3365  df-rab 3420  df-v 3465  df-sbc 3769  df-csb 3885  df-dif 3942  df-un 3944  df-in 3946  df-ss 3956  df-nul 4319  df-if 4525  df-pw 4600  df-sn 4625  df-pr 4627  df-op 4631  df-uni 4904  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5227  df-id 5570  df-xp 5678  df-rel 5679  df-cnv 5680  df-co 5681  df-dm 5682  df-rn 5683  df-res 5684  df-ima 5685  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7372  df-ov 7419  df-oprab 7420  df-lub 18337  df-glb 18338  df-join 18339  df-meet 18340  df-lat 18423  df-ats 38795  df-atl 38826  df-cvlat 38850  df-hlat 38879  df-lhyp 39517
This theorem is referenced by:  cdleme1b  39755  cdleme5  39769  cdleme9  39782  cdleme11g  39794  cdleme11  39799  cdleme35fnpq  39978  cdleme42e  40008  cdlemeg46frv  40054  cdlemg2fv2  40129  cdlemg2m  40133
  Copyright terms: Public domain W3C validator