Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme0aa Structured version   Visualization version   GIF version

Theorem cdleme0aa 37786
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.)
Hypotheses
Ref Expression
cdleme0.l = (le‘𝐾)
cdleme0.j = (join‘𝐾)
cdleme0.m = (meet‘𝐾)
cdleme0.a 𝐴 = (Atoms‘𝐾)
cdleme0.h 𝐻 = (LHyp‘𝐾)
cdleme0.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme0.b 𝐵 = (Base‘𝐾)
Assertion
Ref Expression
cdleme0aa (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈𝐵)

Proof of Theorem cdleme0aa
StepHypRef Expression
1 cdleme0.u . 2 𝑈 = ((𝑃 𝑄) 𝑊)
2 simp1l 1194 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ HL)
32hllatd 36940 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝐾 ∈ Lat)
4 cdleme0.b . . . . . 6 𝐵 = (Base‘𝐾)
5 cdleme0.a . . . . . 6 𝐴 = (Atoms‘𝐾)
64, 5atbase 36865 . . . . 5 (𝑃𝐴𝑃𝐵)
763ad2ant2 1131 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑃𝐵)
84, 5atbase 36865 . . . . 5 (𝑄𝐴𝑄𝐵)
983ad2ant3 1132 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑄𝐵)
10 cdleme0.j . . . . 5 = (join‘𝐾)
114, 10latjcl 17727 . . . 4 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑄𝐵) → (𝑃 𝑄) ∈ 𝐵)
123, 7, 9, 11syl3anc 1368 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → (𝑃 𝑄) ∈ 𝐵)
13 simp1r 1195 . . . 4 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑊𝐻)
14 cdleme0.h . . . . 5 𝐻 = (LHyp‘𝐾)
154, 14lhpbase 37574 . . . 4 (𝑊𝐻𝑊𝐵)
1613, 15syl 17 . . 3 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑊𝐵)
17 cdleme0.m . . . 4 = (meet‘𝐾)
184, 17latmcl 17728 . . 3 ((𝐾 ∈ Lat ∧ (𝑃 𝑄) ∈ 𝐵𝑊𝐵) → ((𝑃 𝑄) 𝑊) ∈ 𝐵)
193, 12, 16, 18syl3anc 1368 . 2 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → ((𝑃 𝑄) 𝑊) ∈ 𝐵)
201, 19eqeltrid 2856 1 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ 𝑃𝐴𝑄𝐴) → 𝑈𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  w3a 1084   = wceq 1538  wcel 2111  cfv 6335  (class class class)co 7150  Basecbs 16541  lecple 16630  joincjn 17620  meetcmee 17621  Latclat 17721  Atomscatm 36839  HLchlt 36926  LHypclh 37560
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2729  ax-rep 5156  ax-sep 5169  ax-nul 5176  ax-pow 5234  ax-pr 5298  ax-un 7459
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-fal 1551  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2557  df-eu 2588  df-clab 2736  df-cleq 2750  df-clel 2830  df-nfc 2901  df-ne 2952  df-ral 3075  df-rex 3076  df-reu 3077  df-rab 3079  df-v 3411  df-sbc 3697  df-csb 3806  df-dif 3861  df-un 3863  df-in 3865  df-ss 3875  df-nul 4226  df-if 4421  df-pw 4496  df-sn 4523  df-pr 4525  df-op 4529  df-uni 4799  df-iun 4885  df-br 5033  df-opab 5095  df-mpt 5113  df-id 5430  df-xp 5530  df-rel 5531  df-cnv 5532  df-co 5533  df-dm 5534  df-rn 5535  df-res 5536  df-ima 5537  df-iota 6294  df-fun 6337  df-fn 6338  df-f 6339  df-f1 6340  df-fo 6341  df-f1o 6342  df-fv 6343  df-riota 7108  df-ov 7153  df-oprab 7154  df-lub 17650  df-glb 17651  df-join 17652  df-meet 17653  df-lat 17722  df-ats 36843  df-atl 36874  df-cvlat 36898  df-hlat 36927  df-lhyp 37564
This theorem is referenced by:  cdleme1b  37802  cdleme5  37816  cdleme9  37829  cdleme11g  37841  cdleme11  37846  cdleme35fnpq  38025  cdleme42e  38055  cdlemeg46frv  38101  cdlemg2fv2  38176  cdlemg2m  38180
  Copyright terms: Public domain W3C validator