Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme0aa | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) |
Ref | Expression |
---|---|
cdleme0.l | ⊢ ≤ = (le‘𝐾) |
cdleme0.j | ⊢ ∨ = (join‘𝐾) |
cdleme0.m | ⊢ ∧ = (meet‘𝐾) |
cdleme0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
cdleme0.b | ⊢ 𝐵 = (Base‘𝐾) |
Ref | Expression |
---|---|
cdleme0aa | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑈 ∈ 𝐵) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme0.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
2 | simp1l 1194 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
3 | 2 | hllatd 36940 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Lat) |
4 | cdleme0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
5 | cdleme0.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
6 | 4, 5 | atbase 36865 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
7 | 6 | 3ad2ant2 1131 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
8 | 4, 5 | atbase 36865 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
9 | 8 | 3ad2ant3 1132 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
10 | cdleme0.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
11 | 4, 10 | latjcl 17727 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
12 | 3, 7, 9, 11 | syl3anc 1368 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
13 | simp1r 1195 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑊 ∈ 𝐻) | |
14 | cdleme0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
15 | 4, 14 | lhpbase 37574 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
16 | 13, 15 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑊 ∈ 𝐵) |
17 | cdleme0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
18 | 4, 17 | latmcl 17728 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐵) |
19 | 3, 12, 16, 18 | syl3anc 1368 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐵) |
20 | 1, 19 | eqeltrid 2856 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑈 ∈ 𝐵) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1084 = wceq 1538 ∈ wcel 2111 ‘cfv 6335 (class class class)co 7150 Basecbs 16541 lecple 16630 joincjn 17620 meetcmee 17621 Latclat 17721 Atomscatm 36839 HLchlt 36926 LHypclh 37560 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5156 ax-sep 5169 ax-nul 5176 ax-pow 5234 ax-pr 5298 ax-un 7459 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-ral 3075 df-rex 3076 df-reu 3077 df-rab 3079 df-v 3411 df-sbc 3697 df-csb 3806 df-dif 3861 df-un 3863 df-in 3865 df-ss 3875 df-nul 4226 df-if 4421 df-pw 4496 df-sn 4523 df-pr 4525 df-op 4529 df-uni 4799 df-iun 4885 df-br 5033 df-opab 5095 df-mpt 5113 df-id 5430 df-xp 5530 df-rel 5531 df-cnv 5532 df-co 5533 df-dm 5534 df-rn 5535 df-res 5536 df-ima 5537 df-iota 6294 df-fun 6337 df-fn 6338 df-f 6339 df-f1 6340 df-fo 6341 df-f1o 6342 df-fv 6343 df-riota 7108 df-ov 7153 df-oprab 7154 df-lub 17650 df-glb 17651 df-join 17652 df-meet 17653 df-lat 17722 df-ats 36843 df-atl 36874 df-cvlat 36898 df-hlat 36927 df-lhyp 37564 |
This theorem is referenced by: cdleme1b 37802 cdleme5 37816 cdleme9 37829 cdleme11g 37841 cdleme11 37846 cdleme35fnpq 38025 cdleme42e 38055 cdlemeg46frv 38101 cdlemg2fv2 38176 cdlemg2m 38180 |
Copyright terms: Public domain | W3C validator |