| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme0aa | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 14-Jun-2012.) |
| Ref | Expression |
|---|---|
| cdleme0.l | ⊢ ≤ = (le‘𝐾) |
| cdleme0.j | ⊢ ∨ = (join‘𝐾) |
| cdleme0.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| cdleme0.b | ⊢ 𝐵 = (Base‘𝐾) |
| Ref | Expression |
|---|---|
| cdleme0aa | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑈 ∈ 𝐵) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme0.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 2 | simp1l 1198 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ HL) | |
| 3 | 2 | hllatd 39357 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝐾 ∈ Lat) |
| 4 | cdleme0.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐾) | |
| 5 | cdleme0.a | . . . . . 6 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 6 | 4, 5 | atbase 39282 | . . . . 5 ⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 7 | 6 | 3ad2ant2 1134 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑃 ∈ 𝐵) |
| 8 | 4, 5 | atbase 39282 | . . . . 5 ⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
| 9 | 8 | 3ad2ant3 1135 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑄 ∈ 𝐵) |
| 10 | cdleme0.j | . . . . 5 ⊢ ∨ = (join‘𝐾) | |
| 11 | 4, 10 | latjcl 18398 | . . . 4 ⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 12 | 3, 7, 9, 11 | syl3anc 1373 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → (𝑃 ∨ 𝑄) ∈ 𝐵) |
| 13 | simp1r 1199 | . . . 4 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑊 ∈ 𝐻) | |
| 14 | cdleme0.h | . . . . 5 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 15 | 4, 14 | lhpbase 39992 | . . . 4 ⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
| 16 | 13, 15 | syl 17 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑊 ∈ 𝐵) |
| 17 | cdleme0.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
| 18 | 4, 17 | latmcl 18399 | . . 3 ⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑄) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐵) |
| 19 | 3, 12, 16, 18 | syl3anc 1373 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → ((𝑃 ∨ 𝑄) ∧ 𝑊) ∈ 𝐵) |
| 20 | 1, 19 | eqeltrid 2832 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑃 ∈ 𝐴 ∧ 𝑄 ∈ 𝐴) → 𝑈 ∈ 𝐵) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ‘cfv 6511 (class class class)co 7387 Basecbs 17179 lecple 17227 joincjn 18272 meetcmee 18273 Latclat 18390 Atomscatm 39256 HLchlt 39343 LHypclh 39978 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-lub 18305 df-glb 18306 df-join 18307 df-meet 18308 df-lat 18391 df-ats 39260 df-atl 39291 df-cvlat 39315 df-hlat 39344 df-lhyp 39982 |
| This theorem is referenced by: cdleme1b 40220 cdleme5 40234 cdleme9 40247 cdleme11g 40259 cdleme11 40264 cdleme35fnpq 40443 cdleme42e 40473 cdlemeg46frv 40519 cdlemg2fv2 40594 cdlemg2m 40598 |
| Copyright terms: Public domain | W3C validator |