![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme0a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.) |
Ref | Expression |
---|---|
cdleme0.l | β’ β€ = (leβπΎ) |
cdleme0.j | β’ β¨ = (joinβπΎ) |
cdleme0.m | β’ β§ = (meetβπΎ) |
cdleme0.a | β’ π΄ = (AtomsβπΎ) |
cdleme0.h | β’ π» = (LHypβπΎ) |
cdleme0.u | β’ π = ((π β¨ π) β§ π) |
Ref | Expression |
---|---|
cdleme0a | β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme0.l | . 2 β’ β€ = (leβπΎ) | |
2 | cdleme0.j | . 2 β’ β¨ = (joinβπΎ) | |
3 | cdleme0.m | . 2 β’ β§ = (meetβπΎ) | |
4 | cdleme0.a | . 2 β’ π΄ = (AtomsβπΎ) | |
5 | cdleme0.h | . 2 β’ π» = (LHypβπΎ) | |
6 | cdleme0.u | . 2 β’ π = ((π β¨ π) β§ π) | |
7 | 1, 2, 3, 4, 5, 6 | lhpat2 39372 | 1 β’ (((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ π β π)) β π β π΄) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 395 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2932 class class class wbr 5138 βcfv 6533 (class class class)co 7401 lecple 17200 joincjn 18263 meetcmee 18264 Atomscatm 38589 HLchlt 38676 LHypclh 39311 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2695 ax-rep 5275 ax-sep 5289 ax-nul 5296 ax-pow 5353 ax-pr 5417 ax-un 7718 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2526 df-eu 2555 df-clab 2702 df-cleq 2716 df-clel 2802 df-nfc 2877 df-ne 2933 df-ral 3054 df-rex 3063 df-rmo 3368 df-reu 3369 df-rab 3425 df-v 3468 df-sbc 3770 df-csb 3886 df-dif 3943 df-un 3945 df-in 3947 df-ss 3957 df-nul 4315 df-if 4521 df-pw 4596 df-sn 4621 df-pr 4623 df-op 4627 df-uni 4900 df-iun 4989 df-br 5139 df-opab 5201 df-mpt 5222 df-id 5564 df-xp 5672 df-rel 5673 df-cnv 5674 df-co 5675 df-dm 5676 df-rn 5677 df-res 5678 df-ima 5679 df-iota 6485 df-fun 6535 df-fn 6536 df-f 6537 df-f1 6538 df-fo 6539 df-f1o 6540 df-fv 6541 df-riota 7357 df-ov 7404 df-oprab 7405 df-proset 18247 df-poset 18265 df-plt 18282 df-lub 18298 df-glb 18299 df-join 18300 df-meet 18301 df-p0 18377 df-p1 18378 df-lat 18384 df-clat 18451 df-oposet 38502 df-ol 38504 df-oml 38505 df-covers 38592 df-ats 38593 df-atl 38624 df-cvlat 38648 df-hlat 38677 df-lhyp 39315 |
This theorem is referenced by: cdleme21c 39654 cdleme21ct 39656 cdleme22aa 39666 cdleme22e 39671 cdleme22eALTN 39672 cdleme35a 39775 cdleme35b 39777 cdleme35c 39778 cdleme35f 39781 cdleme36a 39787 cdleme42k 39811 cdlemg9a 39959 cdlemg12a 39970 cdlemg18b 40006 cdlemg18c 40007 |
Copyright terms: Public domain | W3C validator |