![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme0a | Structured version Visualization version GIF version |
Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.) |
Ref | Expression |
---|---|
cdleme0.l | ⊢ ≤ = (le‘𝐾) |
cdleme0.j | ⊢ ∨ = (join‘𝐾) |
cdleme0.m | ⊢ ∧ = (meet‘𝐾) |
cdleme0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
cdleme0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
cdleme0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
Ref | Expression |
---|---|
cdleme0a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdleme0.l | . 2 ⊢ ≤ = (le‘𝐾) | |
2 | cdleme0.j | . 2 ⊢ ∨ = (join‘𝐾) | |
3 | cdleme0.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
4 | cdleme0.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
5 | cdleme0.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
6 | cdleme0.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
7 | 1, 2, 3, 4, 5, 6 | lhpat2 36065 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ∧ wa 385 ∧ w3a 1108 = wceq 1653 ∈ wcel 2157 ≠ wne 2972 class class class wbr 4844 ‘cfv 6102 (class class class)co 6879 lecple 16273 joincjn 17258 meetcmee 17259 Atomscatm 35283 HLchlt 35370 LHypclh 36004 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2378 ax-ext 2778 ax-rep 4965 ax-sep 4976 ax-nul 4984 ax-pow 5036 ax-pr 5098 ax-un 7184 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2592 df-eu 2610 df-clab 2787 df-cleq 2793 df-clel 2796 df-nfc 2931 df-ne 2973 df-ral 3095 df-rex 3096 df-reu 3097 df-rab 3099 df-v 3388 df-sbc 3635 df-csb 3730 df-dif 3773 df-un 3775 df-in 3777 df-ss 3784 df-nul 4117 df-if 4279 df-pw 4352 df-sn 4370 df-pr 4372 df-op 4376 df-uni 4630 df-iun 4713 df-br 4845 df-opab 4907 df-mpt 4924 df-id 5221 df-xp 5319 df-rel 5320 df-cnv 5321 df-co 5322 df-dm 5323 df-rn 5324 df-res 5325 df-ima 5326 df-iota 6065 df-fun 6104 df-fn 6105 df-f 6106 df-f1 6107 df-fo 6108 df-f1o 6109 df-fv 6110 df-riota 6840 df-ov 6882 df-oprab 6883 df-proset 17242 df-poset 17260 df-plt 17272 df-lub 17288 df-glb 17289 df-join 17290 df-meet 17291 df-p0 17353 df-p1 17354 df-lat 17360 df-clat 17422 df-oposet 35196 df-ol 35198 df-oml 35199 df-covers 35286 df-ats 35287 df-atl 35318 df-cvlat 35342 df-hlat 35371 df-lhyp 36008 |
This theorem is referenced by: cdleme21c 36347 cdleme21ct 36349 cdleme22aa 36359 cdleme22e 36364 cdleme22eALTN 36365 cdleme35a 36468 cdleme35b 36470 cdleme35c 36471 cdleme35f 36474 cdleme36a 36480 cdleme42k 36504 cdlemg9a 36652 cdlemg12a 36663 cdlemg18b 36699 cdlemg18c 36700 |
Copyright terms: Public domain | W3C validator |