| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > cdleme0a | Structured version Visualization version GIF version | ||
| Description: Part of proof of Lemma E in [Crawley] p. 113. (Contributed by NM, 12-Jun-2012.) |
| Ref | Expression |
|---|---|
| cdleme0.l | ⊢ ≤ = (le‘𝐾) |
| cdleme0.j | ⊢ ∨ = (join‘𝐾) |
| cdleme0.m | ⊢ ∧ = (meet‘𝐾) |
| cdleme0.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| cdleme0.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| cdleme0.u | ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) |
| Ref | Expression |
|---|---|
| cdleme0a | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cdleme0.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 2 | cdleme0.j | . 2 ⊢ ∨ = (join‘𝐾) | |
| 3 | cdleme0.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | cdleme0.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | cdleme0.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | cdleme0.u | . 2 ⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | |
| 7 | 1, 2, 3, 4, 5, 6 | lhpat2 40027 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ 𝑃 ≠ 𝑄)) → 𝑈 ∈ 𝐴) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 class class class wbr 5095 ‘cfv 6486 (class class class)co 7353 lecple 17186 joincjn 18235 meetcmee 18236 Atomscatm 39244 HLchlt 39331 LHypclh 39966 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-op 4586 df-uni 4862 df-iun 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-id 5518 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7310 df-ov 7356 df-oprab 7357 df-proset 18218 df-poset 18237 df-plt 18252 df-lub 18268 df-glb 18269 df-join 18270 df-meet 18271 df-p0 18347 df-p1 18348 df-lat 18356 df-clat 18423 df-oposet 39157 df-ol 39159 df-oml 39160 df-covers 39247 df-ats 39248 df-atl 39279 df-cvlat 39303 df-hlat 39332 df-lhyp 39970 |
| This theorem is referenced by: cdleme21c 40309 cdleme21ct 40311 cdleme22aa 40321 cdleme22e 40326 cdleme22eALTN 40327 cdleme35a 40430 cdleme35b 40432 cdleme35c 40433 cdleme35f 40436 cdleme36a 40442 cdleme42k 40466 cdlemg9a 40614 cdlemg12a 40625 cdlemg18b 40661 cdlemg18c 40662 |
| Copyright terms: Public domain | W3C validator |