![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > cdlemefr32snb | Structured version Visualization version GIF version |
Description: Show closure of β¦π / π β¦π. (Contributed by NM, 28-Mar-2013.) |
Ref | Expression |
---|---|
cdlemefr27.b | β’ π΅ = (BaseβπΎ) |
cdlemefr27.l | β’ β€ = (leβπΎ) |
cdlemefr27.j | β’ β¨ = (joinβπΎ) |
cdlemefr27.m | β’ β§ = (meetβπΎ) |
cdlemefr27.a | β’ π΄ = (AtomsβπΎ) |
cdlemefr27.h | β’ π» = (LHypβπΎ) |
cdlemefr27.u | β’ π = ((π β¨ π) β§ π) |
cdlemefr27.c | β’ πΆ = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) |
cdlemefr27.n | β’ π = if(π β€ (π β¨ π), πΌ, πΆ) |
Ref | Expression |
---|---|
cdlemefr32snb | β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β β¦π / π β¦π β π΅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cdlemefr27.b | . . . 4 β’ π΅ = (BaseβπΎ) | |
2 | cdlemefr27.l | . . . 4 β’ β€ = (leβπΎ) | |
3 | cdlemefr27.j | . . . 4 β’ β¨ = (joinβπΎ) | |
4 | cdlemefr27.m | . . . 4 β’ β§ = (meetβπΎ) | |
5 | cdlemefr27.a | . . . 4 β’ π΄ = (AtomsβπΎ) | |
6 | cdlemefr27.h | . . . 4 β’ π» = (LHypβπΎ) | |
7 | cdlemefr27.u | . . . 4 β’ π = ((π β¨ π) β§ π) | |
8 | cdlemefr27.c | . . . 4 β’ πΆ = ((π β¨ π) β§ (π β¨ ((π β¨ π ) β§ π))) | |
9 | cdlemefr27.n | . . . 4 β’ π = if(π β€ (π β¨ π), πΌ, πΆ) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | cdlemefr32sn2aw 39929 | . . 3 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β (β¦π / π β¦π β π΄ β§ Β¬ β¦π / π β¦π β€ π)) |
11 | 10 | simpld 493 | . 2 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β β¦π / π β¦π β π΄) |
12 | 1, 5 | atbase 38813 | . 2 β’ (β¦π / π β¦π β π΄ β β¦π / π β¦π β π΅) |
13 | 11, 12 | syl 17 | 1 β’ ((((πΎ β HL β§ π β π») β§ (π β π΄ β§ Β¬ π β€ π) β§ (π β π΄ β§ Β¬ π β€ π)) β§ (π β π β§ (π β π΄ β§ Β¬ π β€ π)) β§ Β¬ π β€ (π β¨ π)) β β¦π / π β¦π β π΅) |
Colors of variables: wff setvar class |
Syntax hints: Β¬ wn 3 β wi 4 β§ wa 394 β§ w3a 1084 = wceq 1533 β wcel 2098 β wne 2930 β¦csb 3886 ifcif 4525 class class class wbr 5144 βcfv 6543 (class class class)co 7413 Basecbs 17174 lecple 17234 joincjn 18297 meetcmee 18298 Atomscatm 38787 HLchlt 38874 LHypclh 39509 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5281 ax-sep 5295 ax-nul 5302 ax-pow 5360 ax-pr 5424 ax-un 7735 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2931 df-ral 3052 df-rex 3061 df-rmo 3364 df-reu 3365 df-rab 3420 df-v 3465 df-sbc 3771 df-csb 3887 df-dif 3944 df-un 3946 df-in 3948 df-ss 3958 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-iin 4995 df-br 5145 df-opab 5207 df-mpt 5228 df-id 5571 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7369 df-ov 7416 df-oprab 7417 df-mpo 7418 df-1st 7987 df-2nd 7988 df-proset 18281 df-poset 18299 df-plt 18316 df-lub 18332 df-glb 18333 df-join 18334 df-meet 18335 df-p0 18411 df-p1 18412 df-lat 18418 df-clat 18485 df-oposet 38700 df-ol 38702 df-oml 38703 df-covers 38790 df-ats 38791 df-atl 38822 df-cvlat 38846 df-hlat 38875 df-lines 39026 df-psubsp 39028 df-pmap 39029 df-padd 39321 df-lhyp 39513 |
This theorem is referenced by: cdlemefr29clN 39932 cdlemefr32fvaN 39934 cdlemefr32fva1 39935 |
Copyright terms: Public domain | W3C validator |