![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cfon | Structured version Visualization version GIF version |
Description: The cofinality of any set is an ordinal (although it only makes sense when 𝐴 is an ordinal). (Contributed by Mario Carneiro, 9-Mar-2013.) |
Ref | Expression |
---|---|
cfon | ⊢ (cf‘𝐴) ∈ On |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cardcf 9362 | . 2 ⊢ (card‘(cf‘𝐴)) = (cf‘𝐴) | |
2 | cardon 9056 | . 2 ⊢ (card‘(cf‘𝐴)) ∈ On | |
3 | 1, 2 | eqeltrri 2875 | 1 ⊢ (cf‘𝐴) ∈ On |
Colors of variables: wff setvar class |
Syntax hints: ∈ wcel 2157 Oncon0 5941 ‘cfv 6101 cardccrd 9047 cfccf 9049 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1891 ax-4 1905 ax-5 2006 ax-6 2072 ax-7 2107 ax-8 2159 ax-9 2166 ax-10 2185 ax-11 2200 ax-12 2213 ax-13 2377 ax-ext 2777 ax-sep 4975 ax-nul 4983 ax-pow 5035 ax-pr 5097 ax-un 7183 |
This theorem depends on definitions: df-bi 199 df-an 386 df-or 875 df-3or 1109 df-3an 1110 df-tru 1657 df-ex 1876 df-nf 1880 df-sb 2065 df-mo 2591 df-eu 2609 df-clab 2786 df-cleq 2792 df-clel 2795 df-nfc 2930 df-ne 2972 df-ral 3094 df-rex 3095 df-rab 3098 df-v 3387 df-sbc 3634 df-dif 3772 df-un 3774 df-in 3776 df-ss 3783 df-pss 3785 df-nul 4116 df-if 4278 df-pw 4351 df-sn 4369 df-pr 4371 df-tp 4373 df-op 4375 df-uni 4629 df-int 4668 df-br 4844 df-opab 4906 df-mpt 4923 df-tr 4946 df-id 5220 df-eprel 5225 df-po 5233 df-so 5234 df-fr 5271 df-we 5273 df-xp 5318 df-rel 5319 df-cnv 5320 df-co 5321 df-dm 5322 df-rn 5323 df-res 5324 df-ima 5325 df-ord 5944 df-on 5945 df-iota 6064 df-fun 6103 df-fn 6104 df-f 6105 df-f1 6106 df-fo 6107 df-f1o 6108 df-fv 6109 df-er 7982 df-en 8196 df-card 9051 df-cf 9053 |
This theorem is referenced by: cfslb2n 9378 cfsmolem 9380 cfcoflem 9382 cfcof 9384 cfidm 9385 alephreg 9692 winaon 9798 inawina 9800 winainf 9804 rankcf 9887 tskcard 9891 gruina 9928 |
Copyright terms: Public domain | W3C validator |