Mathbox for Glauco Siliprandi < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfioobdlem Structured version   Visualization version   GIF version

Theorem cncfioobdlem 42533
 Description: 𝐺 actually extends 𝐹. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfioobdlem.a (𝜑𝐴 ∈ ℝ)
cncfioobdlem.b (𝜑𝐵 ∈ ℝ)
cncfioobdlem.f (𝜑𝐹:(𝐴(,)𝐵)⟶𝑉)
cncfioobdlem.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfioobdlem.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
Assertion
Ref Expression
cncfioobdlem (𝜑 → (𝐺𝐶) = (𝐹𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝐺(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem cncfioobdlem
StepHypRef Expression
1 cncfioobdlem.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
21a1i 11 . 2 (𝜑𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
3 cncfioobdlem.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
43adantr 484 . . . . . 6 ((𝜑𝑥 = 𝐶) → 𝐴 ∈ ℝ)
5 cncfioobdlem.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐴(,)𝐵))
63rexrd 10680 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
7 cncfioobdlem.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
87rexrd 10680 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
9 elioo2 12767 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
106, 8, 9syl2anc 587 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
115, 10mpbid 235 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵))
1211simp2d 1140 . . . . . . . 8 (𝜑𝐴 < 𝐶)
1312adantr 484 . . . . . . 7 ((𝜑𝑥 = 𝐶) → 𝐴 < 𝐶)
14 eqcom 2805 . . . . . . . . 9 (𝑥 = 𝐶𝐶 = 𝑥)
1514biimpi 219 . . . . . . . 8 (𝑥 = 𝐶𝐶 = 𝑥)
1615adantl 485 . . . . . . 7 ((𝜑𝑥 = 𝐶) → 𝐶 = 𝑥)
1713, 16breqtrd 5056 . . . . . 6 ((𝜑𝑥 = 𝐶) → 𝐴 < 𝑥)
184, 17gtned 10764 . . . . 5 ((𝜑𝑥 = 𝐶) → 𝑥𝐴)
1918neneqd 2992 . . . 4 ((𝜑𝑥 = 𝐶) → ¬ 𝑥 = 𝐴)
2019iffalsed 4436 . . 3 ((𝜑𝑥 = 𝐶) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
21 simpr 488 . . . . . . 7 ((𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)
225elioored 42181 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
2322adantr 484 . . . . . . 7 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ ℝ)
2421, 23eqeltrd 2890 . . . . . 6 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ ℝ)
2511simp3d 1141 . . . . . . . 8 (𝜑𝐶 < 𝐵)
2625adantr 484 . . . . . . 7 ((𝜑𝑥 = 𝐶) → 𝐶 < 𝐵)
2721, 26eqbrtrd 5052 . . . . . 6 ((𝜑𝑥 = 𝐶) → 𝑥 < 𝐵)
2824, 27ltned 10765 . . . . 5 ((𝜑𝑥 = 𝐶) → 𝑥𝐵)
2928neneqd 2992 . . . 4 ((𝜑𝑥 = 𝐶) → ¬ 𝑥 = 𝐵)
3029iffalsed 4436 . . 3 ((𝜑𝑥 = 𝐶) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
3121fveq2d 6649 . . 3 ((𝜑𝑥 = 𝐶) → (𝐹𝑥) = (𝐹𝐶))
3220, 30, 313eqtrd 2837 . 2 ((𝜑𝑥 = 𝐶) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝐶))
33 ioossicc 12811 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3433, 5sseldi 3913 . 2 (𝜑𝐶 ∈ (𝐴[,]𝐵))
35 cncfioobdlem.f . . 3 (𝜑𝐹:(𝐴(,)𝐵)⟶𝑉)
3635, 5ffvelrnd 6829 . 2 (𝜑 → (𝐹𝐶) ∈ 𝑉)
372, 32, 34, 36fvmptd 6752 1 (𝜑 → (𝐺𝐶) = (𝐹𝐶))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ↔ wb 209   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2111  ifcif 4425   class class class wbr 5030   ↦ cmpt 5110  ⟶wf 6320  ‘cfv 6324  (class class class)co 7135  ℝcr 10525  ℝ*cxr 10663   < clt 10664  (,)cioo 12726  [,]cicc 12729 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-ioo 12730  df-icc 12733 This theorem is referenced by:  cncfioobd  42534
 Copyright terms: Public domain W3C validator