Proof of Theorem cncfioobdlem
| Step | Hyp | Ref
| Expression |
| 1 | | cncfioobdlem.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
| 2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))))) |
| 3 | | cncfioobdlem.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 4 | 3 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐴 ∈ ℝ) |
| 5 | | cncfioobdlem.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
| 6 | 3 | rexrd 11290 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
| 7 | | cncfioobdlem.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 8 | 7 | rexrd 11290 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
| 9 | | elioo2 13408 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 10 | 6, 8, 9 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
| 11 | 5, 10 | mpbid 232 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
| 12 | 11 | simp2d 1143 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 < 𝐶) |
| 13 | 12 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐴 < 𝐶) |
| 14 | | eqcom 2743 |
. . . . . . . . 9
⊢ (𝑥 = 𝐶 ↔ 𝐶 = 𝑥) |
| 15 | 14 | biimpi 216 |
. . . . . . . 8
⊢ (𝑥 = 𝐶 → 𝐶 = 𝑥) |
| 16 | 15 | adantl 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐶 = 𝑥) |
| 17 | 13, 16 | breqtrd 5150 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐴 < 𝑥) |
| 18 | 4, 17 | gtned 11375 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝑥 ≠ 𝐴) |
| 19 | 18 | neneqd 2938 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → ¬ 𝑥 = 𝐴) |
| 20 | 19 | iffalsed 4516 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
| 21 | | simpr 484 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝑥 = 𝐶) |
| 22 | 5 | elioored 45545 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℝ) |
| 23 | 22 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐶 ∈ ℝ) |
| 24 | 21, 23 | eqeltrd 2835 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝑥 ∈ ℝ) |
| 25 | 11 | simp3d 1144 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 < 𝐵) |
| 26 | 25 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐶 < 𝐵) |
| 27 | 21, 26 | eqbrtrd 5146 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝑥 < 𝐵) |
| 28 | 24, 27 | ltned 11376 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝑥 ≠ 𝐵) |
| 29 | 28 | neneqd 2938 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → ¬ 𝑥 = 𝐵) |
| 30 | 29 | iffalsed 4516 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
| 31 | 21 | fveq2d 6885 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → (𝐹‘𝑥) = (𝐹‘𝐶)) |
| 32 | 20, 30, 31 | 3eqtrd 2775 |
. 2
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝐶)) |
| 33 | | ioossicc 13455 |
. . 3
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 34 | 33, 5 | sselid 3961 |
. 2
⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
| 35 | | cncfioobdlem.f |
. . 3
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶𝑉) |
| 36 | 35, 5 | ffvelcdmd 7080 |
. 2
⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝑉) |
| 37 | 2, 32, 34, 36 | fvmptd 6998 |
1
⊢ (𝜑 → (𝐺‘𝐶) = (𝐹‘𝐶)) |