Proof of Theorem cncfioobdlem
Step | Hyp | Ref
| Expression |
1 | | cncfioobdlem.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
2 | 1 | a1i 11 |
. 2
⊢ (𝜑 → 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))))) |
3 | | cncfioobdlem.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ ℝ) |
4 | 3 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐴 ∈ ℝ) |
5 | | cncfioobdlem.c |
. . . . . . . . . 10
⊢ (𝜑 → 𝐶 ∈ (𝐴(,)𝐵)) |
6 | 3 | rexrd 11025 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
7 | | cncfioobdlem.b |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝐵 ∈ ℝ) |
8 | 7 | rexrd 11025 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
9 | | elioo2 13120 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
10 | 6, 8, 9 | syl2anc 584 |
. . . . . . . . . 10
⊢ (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵))) |
11 | 5, 10 | mpbid 231 |
. . . . . . . . 9
⊢ (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶 ∧ 𝐶 < 𝐵)) |
12 | 11 | simp2d 1142 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 < 𝐶) |
13 | 12 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐴 < 𝐶) |
14 | | eqcom 2745 |
. . . . . . . . 9
⊢ (𝑥 = 𝐶 ↔ 𝐶 = 𝑥) |
15 | 14 | biimpi 215 |
. . . . . . . 8
⊢ (𝑥 = 𝐶 → 𝐶 = 𝑥) |
16 | 15 | adantl 482 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐶 = 𝑥) |
17 | 13, 16 | breqtrd 5100 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐴 < 𝑥) |
18 | 4, 17 | gtned 11110 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝑥 ≠ 𝐴) |
19 | 18 | neneqd 2948 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → ¬ 𝑥 = 𝐴) |
20 | 19 | iffalsed 4470 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
21 | | simpr 485 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝑥 = 𝐶) |
22 | 5 | elioored 43087 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 ∈ ℝ) |
23 | 22 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐶 ∈ ℝ) |
24 | 21, 23 | eqeltrd 2839 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝑥 ∈ ℝ) |
25 | 11 | simp3d 1143 |
. . . . . . . 8
⊢ (𝜑 → 𝐶 < 𝐵) |
26 | 25 | adantr 481 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝐶 < 𝐵) |
27 | 21, 26 | eqbrtrd 5096 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝑥 < 𝐵) |
28 | 24, 27 | ltned 11111 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → 𝑥 ≠ 𝐵) |
29 | 28 | neneqd 2948 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → ¬ 𝑥 = 𝐵) |
30 | 29 | iffalsed 4470 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
31 | 21 | fveq2d 6778 |
. . 3
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → (𝐹‘𝑥) = (𝐹‘𝐶)) |
32 | 20, 30, 31 | 3eqtrd 2782 |
. 2
⊢ ((𝜑 ∧ 𝑥 = 𝐶) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝐶)) |
33 | | ioossicc 13165 |
. . 3
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
34 | 33, 5 | sselid 3919 |
. 2
⊢ (𝜑 → 𝐶 ∈ (𝐴[,]𝐵)) |
35 | | cncfioobdlem.f |
. . 3
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶𝑉) |
36 | 35, 5 | ffvelrnd 6962 |
. 2
⊢ (𝜑 → (𝐹‘𝐶) ∈ 𝑉) |
37 | 2, 32, 34, 36 | fvmptd 6882 |
1
⊢ (𝜑 → (𝐺‘𝐶) = (𝐹‘𝐶)) |