Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfioobdlem Structured version   Visualization version   GIF version

Theorem cncfioobdlem 45916
Description: 𝐺 actually extends 𝐹. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfioobdlem.a (𝜑𝐴 ∈ ℝ)
cncfioobdlem.b (𝜑𝐵 ∈ ℝ)
cncfioobdlem.f (𝜑𝐹:(𝐴(,)𝐵)⟶𝑉)
cncfioobdlem.g 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
cncfioobdlem.c (𝜑𝐶 ∈ (𝐴(,)𝐵))
Assertion
Ref Expression
cncfioobdlem (𝜑 → (𝐺𝐶) = (𝐹𝐶))
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝑥,𝐹   𝜑,𝑥
Allowed substitution hints:   𝑅(𝑥)   𝐺(𝑥)   𝐿(𝑥)   𝑉(𝑥)

Proof of Theorem cncfioobdlem
StepHypRef Expression
1 cncfioobdlem.g . . 3 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))))
21a1i 11 . 2 (𝜑𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))))
3 cncfioobdlem.a . . . . . . 7 (𝜑𝐴 ∈ ℝ)
43adantr 480 . . . . . 6 ((𝜑𝑥 = 𝐶) → 𝐴 ∈ ℝ)
5 cncfioobdlem.c . . . . . . . . . 10 (𝜑𝐶 ∈ (𝐴(,)𝐵))
63rexrd 11312 . . . . . . . . . . 11 (𝜑𝐴 ∈ ℝ*)
7 cncfioobdlem.b . . . . . . . . . . . 12 (𝜑𝐵 ∈ ℝ)
87rexrd 11312 . . . . . . . . . . 11 (𝜑𝐵 ∈ ℝ*)
9 elioo2 13429 . . . . . . . . . . 11 ((𝐴 ∈ ℝ*𝐵 ∈ ℝ*) → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
106, 8, 9syl2anc 584 . . . . . . . . . 10 (𝜑 → (𝐶 ∈ (𝐴(,)𝐵) ↔ (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵)))
115, 10mpbid 232 . . . . . . . . 9 (𝜑 → (𝐶 ∈ ℝ ∧ 𝐴 < 𝐶𝐶 < 𝐵))
1211simp2d 1143 . . . . . . . 8 (𝜑𝐴 < 𝐶)
1312adantr 480 . . . . . . 7 ((𝜑𝑥 = 𝐶) → 𝐴 < 𝐶)
14 eqcom 2743 . . . . . . . . 9 (𝑥 = 𝐶𝐶 = 𝑥)
1514biimpi 216 . . . . . . . 8 (𝑥 = 𝐶𝐶 = 𝑥)
1615adantl 481 . . . . . . 7 ((𝜑𝑥 = 𝐶) → 𝐶 = 𝑥)
1713, 16breqtrd 5168 . . . . . 6 ((𝜑𝑥 = 𝐶) → 𝐴 < 𝑥)
184, 17gtned 11397 . . . . 5 ((𝜑𝑥 = 𝐶) → 𝑥𝐴)
1918neneqd 2944 . . . 4 ((𝜑𝑥 = 𝐶) → ¬ 𝑥 = 𝐴)
2019iffalsed 4535 . . 3 ((𝜑𝑥 = 𝐶) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)))
21 simpr 484 . . . . . . 7 ((𝜑𝑥 = 𝐶) → 𝑥 = 𝐶)
225elioored 45567 . . . . . . . 8 (𝜑𝐶 ∈ ℝ)
2322adantr 480 . . . . . . 7 ((𝜑𝑥 = 𝐶) → 𝐶 ∈ ℝ)
2421, 23eqeltrd 2840 . . . . . 6 ((𝜑𝑥 = 𝐶) → 𝑥 ∈ ℝ)
2511simp3d 1144 . . . . . . . 8 (𝜑𝐶 < 𝐵)
2625adantr 480 . . . . . . 7 ((𝜑𝑥 = 𝐶) → 𝐶 < 𝐵)
2721, 26eqbrtrd 5164 . . . . . 6 ((𝜑𝑥 = 𝐶) → 𝑥 < 𝐵)
2824, 27ltned 11398 . . . . 5 ((𝜑𝑥 = 𝐶) → 𝑥𝐵)
2928neneqd 2944 . . . 4 ((𝜑𝑥 = 𝐶) → ¬ 𝑥 = 𝐵)
3029iffalsed 4535 . . 3 ((𝜑𝑥 = 𝐶) → if(𝑥 = 𝐵, 𝐿, (𝐹𝑥)) = (𝐹𝑥))
3121fveq2d 6909 . . 3 ((𝜑𝑥 = 𝐶) → (𝐹𝑥) = (𝐹𝐶))
3220, 30, 313eqtrd 2780 . 2 ((𝜑𝑥 = 𝐶) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹𝑥))) = (𝐹𝐶))
33 ioossicc 13474 . . 3 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
3433, 5sselid 3980 . 2 (𝜑𝐶 ∈ (𝐴[,]𝐵))
35 cncfioobdlem.f . . 3 (𝜑𝐹:(𝐴(,)𝐵)⟶𝑉)
3635, 5ffvelcdmd 7104 . 2 (𝜑 → (𝐹𝐶) ∈ 𝑉)
372, 32, 34, 36fvmptd 7022 1 (𝜑 → (𝐺𝐶) = (𝐹𝐶))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  ifcif 4524   class class class wbr 5142  cmpt 5224  wf 6556  cfv 6560  (class class class)co 7432  cr 11155  *cxr 11295   < clt 11296  (,)cioo 13388  [,]cicc 13391
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-pre-lttri 11230  ax-pre-lttrn 11231
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-iun 4992  df-br 5143  df-opab 5205  df-mpt 5225  df-id 5577  df-po 5591  df-so 5592  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-ov 7435  df-oprab 7436  df-mpo 7437  df-1st 8015  df-2nd 8016  df-er 8746  df-en 8987  df-dom 8988  df-sdom 8989  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-ioo 13392  df-icc 13395
This theorem is referenced by:  cncfioobd  45917
  Copyright terms: Public domain W3C validator