Proof of Theorem cncfiooiccre
Step | Hyp | Ref
| Expression |
1 | | iftrue 4465 |
. . . . . . 7
⊢ (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝑅) |
2 | 1 | adantl 482 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝑅) |
3 | | cncfiooiccre.f |
. . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) |
4 | | cncff 24056 |
. . . . . . . . 9
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
5 | 3, 4 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
6 | | ioosscn 13141 |
. . . . . . . . 9
⊢ (𝐴(,)𝐵) ⊆ ℂ |
7 | 6 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) |
8 | | eqid 2738 |
. . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
9 | | cncfiooiccre.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℝ) |
10 | 9 | rexrd 11025 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈
ℝ*) |
11 | | cncfiooiccre.a |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) |
12 | | cncfiooiccre.altb |
. . . . . . . . 9
⊢ (𝜑 → 𝐴 < 𝐵) |
13 | 8, 10, 11, 12 | lptioo1cn 43187 |
. . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵))) |
14 | | cncfiooiccre.r |
. . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) |
15 | 5, 7, 13, 14 | limcrecl 43170 |
. . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℝ) |
16 | 15 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℝ) |
17 | 2, 16 | eqeltrd 2839 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) |
18 | 17 | adantlr 712 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) |
19 | | iffalse 4468 |
. . . . . . . . 9
⊢ (¬
𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) |
20 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = 𝐿) |
21 | 19, 20 | sylan9eq 2798 |
. . . . . . . 8
⊢ ((¬
𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝐿) |
22 | 21 | adantll 711 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝐿) |
23 | 11 | rexrd 11025 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ*) |
24 | 8, 23, 9, 12 | lptioo2cn 43186 |
. . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈
((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵))) |
25 | | cncfiooiccre.l |
. . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
26 | 5, 7, 24, 25 | limcrecl 43170 |
. . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ ℝ) |
27 | 26 | ad2antrr 723 |
. . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℝ) |
28 | 22, 27 | eqeltrd 2839 |
. . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) |
29 | 28 | adantllr 716 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) |
30 | | iffalse 4468 |
. . . . . . . 8
⊢ (¬
𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) |
31 | 19, 30 | sylan9eq 2798 |
. . . . . . 7
⊢ ((¬
𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) |
32 | 31 | adantll 711 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) |
33 | 5 | ad3antrrr 727 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℝ) |
34 | 23 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈
ℝ*) |
35 | 10 | ad3antrrr 727 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈
ℝ*) |
36 | 11 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) |
37 | 9 | adantr 481 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) |
38 | | simpr 485 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) |
39 | | eliccre 43043 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
40 | 36, 37, 38, 39 | syl3anc 1370 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) |
41 | 40 | ad2antrr 723 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ) |
42 | 11 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ) |
43 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ) |
44 | 23 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈
ℝ*) |
45 | 10 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐵 ∈
ℝ*) |
46 | 38 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝐴[,]𝐵)) |
47 | | iccgelb 13135 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑥
∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) |
48 | 44, 45, 46, 47 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ≤ 𝑥) |
49 | | neqne 2951 |
. . . . . . . . . . 11
⊢ (¬
𝑥 = 𝐴 → 𝑥 ≠ 𝐴) |
50 | 49 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ≠ 𝐴) |
51 | 42, 43, 48, 50 | leneltd 11129 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥) |
52 | 51 | adantr 481 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥) |
53 | 40 | adantr 481 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ) |
54 | 9 | ad2antrr 723 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ) |
55 | 23 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈
ℝ*) |
56 | 10 | ad2antrr 723 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈
ℝ*) |
57 | 38 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) |
58 | | iccleub 13134 |
. . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑥
∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) |
59 | 55, 56, 57, 58 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ≤ 𝐵) |
60 | | neqne 2951 |
. . . . . . . . . . . 12
⊢ (¬
𝑥 = 𝐵 → 𝑥 ≠ 𝐵) |
61 | 60 | necomd 2999 |
. . . . . . . . . . 11
⊢ (¬
𝑥 = 𝐵 → 𝐵 ≠ 𝑥) |
62 | 61 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ≠ 𝑥) |
63 | 53, 54, 59, 62 | leneltd 11129 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵) |
64 | 63 | adantlr 712 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵) |
65 | 34, 35, 41, 52, 64 | eliood 43036 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵)) |
66 | 33, 65 | ffvelrnd 6962 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹‘𝑥) ∈ ℝ) |
67 | 32, 66 | eqeltrd 2839 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) |
68 | 29, 67 | pm2.61dan 810 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) |
69 | 18, 68 | pm2.61dan 810 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) |
70 | | cncfiooiccre.g |
. . 3
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) |
71 | 69, 70 | fmptd 6988 |
. 2
⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℝ) |
72 | | ax-resscn 10928 |
. . 3
⊢ ℝ
⊆ ℂ |
73 | | cncfiooiccre.x |
. . . 4
⊢
Ⅎ𝑥𝜑 |
74 | | ssid 3943 |
. . . . . 6
⊢ ℂ
⊆ ℂ |
75 | | cncfss 24062 |
. . . . . 6
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)) |
76 | 72, 74, 75 | mp2an 689 |
. . . . 5
⊢ ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ) |
77 | 76, 3 | sselid 3919 |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
78 | 73, 70, 11, 9, 77, 25, 14 | cncfiooicc 43435 |
. . 3
⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
79 | | cncffvrn 24061 |
. . 3
⊢ ((ℝ
⊆ ℂ ∧ 𝐺
∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℝ)) |
80 | 72, 78, 79 | sylancr 587 |
. 2
⊢ (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℝ)) |
81 | 71, 80 | mpbird 256 |
1
⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |