Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfiooiccre Structured version   Visualization version   GIF version

Theorem cncfiooiccre 44909
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐡) can be extended to a continuous function 𝐺 on the corresponding closed interval, if it has a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐡. 𝐹 is assumed to be real-valued. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfiooiccre.x β„²π‘₯πœ‘
cncfiooiccre.g 𝐺 = (π‘₯ ∈ (𝐴[,]𝐡) ↦ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))))
cncfiooiccre.a (πœ‘ β†’ 𝐴 ∈ ℝ)
cncfiooiccre.b (πœ‘ β†’ 𝐡 ∈ ℝ)
cncfiooiccre.altb (πœ‘ β†’ 𝐴 < 𝐡)
cncfiooiccre.f (πœ‘ β†’ 𝐹 ∈ ((𝐴(,)𝐡)–cn→ℝ))
cncfiooiccre.l (πœ‘ β†’ 𝐿 ∈ (𝐹 limβ„‚ 𝐡))
cncfiooiccre.r (πœ‘ β†’ 𝑅 ∈ (𝐹 limβ„‚ 𝐴))
Assertion
Ref Expression
cncfiooiccre (πœ‘ β†’ 𝐺 ∈ ((𝐴[,]𝐡)–cn→ℝ))
Distinct variable groups:   π‘₯,𝐴   π‘₯,𝐡   π‘₯,𝐹   π‘₯,𝐿   π‘₯,𝑅   πœ‘,π‘₯
Allowed substitution hint:   𝐺(π‘₯)

Proof of Theorem cncfiooiccre
StepHypRef Expression
1 iftrue 4533 . . . . . . 7 (π‘₯ = 𝐴 β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = 𝑅)
21adantl 480 . . . . . 6 ((πœ‘ ∧ π‘₯ = 𝐴) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = 𝑅)
3 cncfiooiccre.f . . . . . . . . 9 (πœ‘ β†’ 𝐹 ∈ ((𝐴(,)𝐡)–cn→ℝ))
4 cncff 24633 . . . . . . . . 9 (𝐹 ∈ ((𝐴(,)𝐡)–cn→ℝ) β†’ 𝐹:(𝐴(,)𝐡)βŸΆβ„)
53, 4syl 17 . . . . . . . 8 (πœ‘ β†’ 𝐹:(𝐴(,)𝐡)βŸΆβ„)
6 ioosscn 13390 . . . . . . . . 9 (𝐴(,)𝐡) βŠ† β„‚
76a1i 11 . . . . . . . 8 (πœ‘ β†’ (𝐴(,)𝐡) βŠ† β„‚)
8 eqid 2730 . . . . . . . . 9 (TopOpenβ€˜β„‚fld) = (TopOpenβ€˜β„‚fld)
9 cncfiooiccre.b . . . . . . . . . 10 (πœ‘ β†’ 𝐡 ∈ ℝ)
109rexrd 11268 . . . . . . . . 9 (πœ‘ β†’ 𝐡 ∈ ℝ*)
11 cncfiooiccre.a . . . . . . . . 9 (πœ‘ β†’ 𝐴 ∈ ℝ)
12 cncfiooiccre.altb . . . . . . . . 9 (πœ‘ β†’ 𝐴 < 𝐡)
138, 10, 11, 12lptioo1cn 44660 . . . . . . . 8 (πœ‘ β†’ 𝐴 ∈ ((limPtβ€˜(TopOpenβ€˜β„‚fld))β€˜(𝐴(,)𝐡)))
14 cncfiooiccre.r . . . . . . . 8 (πœ‘ β†’ 𝑅 ∈ (𝐹 limβ„‚ 𝐴))
155, 7, 13, 14limcrecl 44643 . . . . . . 7 (πœ‘ β†’ 𝑅 ∈ ℝ)
1615adantr 479 . . . . . 6 ((πœ‘ ∧ π‘₯ = 𝐴) β†’ 𝑅 ∈ ℝ)
172, 16eqeltrd 2831 . . . . 5 ((πœ‘ ∧ π‘₯ = 𝐴) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ ℝ)
1817adantlr 711 . . . 4 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ π‘₯ = 𝐴) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ ℝ)
19 iffalse 4536 . . . . . . . . 9 (Β¬ π‘₯ = 𝐴 β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)))
20 iftrue 4533 . . . . . . . . 9 (π‘₯ = 𝐡 β†’ if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)) = 𝐿)
2119, 20sylan9eq 2790 . . . . . . . 8 ((Β¬ π‘₯ = 𝐴 ∧ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = 𝐿)
2221adantll 710 . . . . . . 7 (((πœ‘ ∧ Β¬ π‘₯ = 𝐴) ∧ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = 𝐿)
2311rexrd 11268 . . . . . . . . . 10 (πœ‘ β†’ 𝐴 ∈ ℝ*)
248, 23, 9, 12lptioo2cn 44659 . . . . . . . . 9 (πœ‘ β†’ 𝐡 ∈ ((limPtβ€˜(TopOpenβ€˜β„‚fld))β€˜(𝐴(,)𝐡)))
25 cncfiooiccre.l . . . . . . . . 9 (πœ‘ β†’ 𝐿 ∈ (𝐹 limβ„‚ 𝐡))
265, 7, 24, 25limcrecl 44643 . . . . . . . 8 (πœ‘ β†’ 𝐿 ∈ ℝ)
2726ad2antrr 722 . . . . . . 7 (((πœ‘ ∧ Β¬ π‘₯ = 𝐴) ∧ π‘₯ = 𝐡) β†’ 𝐿 ∈ ℝ)
2822, 27eqeltrd 2831 . . . . . 6 (((πœ‘ ∧ Β¬ π‘₯ = 𝐴) ∧ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ ℝ)
2928adantllr 715 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ ℝ)
30 iffalse 4536 . . . . . . . 8 (Β¬ π‘₯ = 𝐡 β†’ if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯)) = (πΉβ€˜π‘₯))
3119, 30sylan9eq 2790 . . . . . . 7 ((Β¬ π‘₯ = 𝐴 ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = (πΉβ€˜π‘₯))
3231adantll 710 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) = (πΉβ€˜π‘₯))
335ad3antrrr 726 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐹:(𝐴(,)𝐡)βŸΆβ„)
3423ad3antrrr 726 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐴 ∈ ℝ*)
3510ad3antrrr 726 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐡 ∈ ℝ*)
3611adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐴 ∈ ℝ)
379adantr 479 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐡 ∈ ℝ)
38 simpr 483 . . . . . . . . . 10 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ∈ (𝐴[,]𝐡))
39 eliccre 44516 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐡 ∈ ℝ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ∈ ℝ)
4036, 37, 38, 39syl3anc 1369 . . . . . . . . 9 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ∈ ℝ)
4140ad2antrr 722 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ ∈ ℝ)
4211ad2antrr 722 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ 𝐴 ∈ ℝ)
4340adantr 479 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ π‘₯ ∈ ℝ)
4423ad2antrr 722 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ 𝐴 ∈ ℝ*)
4510ad2antrr 722 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ 𝐡 ∈ ℝ*)
4638adantr 479 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ π‘₯ ∈ (𝐴[,]𝐡))
47 iccgelb 13384 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ 𝐴 ≀ π‘₯)
4844, 45, 46, 47syl3anc 1369 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ 𝐴 ≀ π‘₯)
49 neqne 2946 . . . . . . . . . . 11 (Β¬ π‘₯ = 𝐴 β†’ π‘₯ β‰  𝐴)
5049adantl 480 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ π‘₯ β‰  𝐴)
5142, 43, 48, 50leneltd 11372 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ 𝐴 < π‘₯)
5251adantr 479 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐴 < π‘₯)
5340adantr 479 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ ∈ ℝ)
549ad2antrr 722 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐡 ∈ ℝ)
5523ad2antrr 722 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐴 ∈ ℝ*)
5610ad2antrr 722 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐡 ∈ ℝ*)
5738adantr 479 . . . . . . . . . . 11 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ ∈ (𝐴[,]𝐡))
58 iccleub 13383 . . . . . . . . . . 11 ((𝐴 ∈ ℝ* ∧ 𝐡 ∈ ℝ* ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ π‘₯ ≀ 𝐡)
5955, 56, 57, 58syl3anc 1369 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ ≀ 𝐡)
60 neqne 2946 . . . . . . . . . . . 12 (Β¬ π‘₯ = 𝐡 β†’ π‘₯ β‰  𝐡)
6160necomd 2994 . . . . . . . . . . 11 (Β¬ π‘₯ = 𝐡 β†’ 𝐡 β‰  π‘₯)
6261adantl 480 . . . . . . . . . 10 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ 𝐡 β‰  π‘₯)
6353, 54, 59, 62leneltd 11372 . . . . . . . . 9 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ < 𝐡)
6463adantlr 711 . . . . . . . 8 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ < 𝐡)
6534, 35, 41, 52, 64eliood 44509 . . . . . . 7 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ π‘₯ ∈ (𝐴(,)𝐡))
6633, 65ffvelcdmd 7086 . . . . . 6 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ (πΉβ€˜π‘₯) ∈ ℝ)
6732, 66eqeltrd 2831 . . . . 5 ((((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) ∧ Β¬ π‘₯ = 𝐡) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ ℝ)
6829, 67pm2.61dan 809 . . . 4 (((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) ∧ Β¬ π‘₯ = 𝐴) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ ℝ)
6918, 68pm2.61dan 809 . . 3 ((πœ‘ ∧ π‘₯ ∈ (𝐴[,]𝐡)) β†’ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))) ∈ ℝ)
70 cncfiooiccre.g . . 3 𝐺 = (π‘₯ ∈ (𝐴[,]𝐡) ↦ if(π‘₯ = 𝐴, 𝑅, if(π‘₯ = 𝐡, 𝐿, (πΉβ€˜π‘₯))))
7169, 70fmptd 7114 . 2 (πœ‘ β†’ 𝐺:(𝐴[,]𝐡)βŸΆβ„)
72 ax-resscn 11169 . . 3 ℝ βŠ† β„‚
73 cncfiooiccre.x . . . 4 β„²π‘₯πœ‘
74 ssid 4003 . . . . . 6 β„‚ βŠ† β„‚
75 cncfss 24639 . . . . . 6 ((ℝ βŠ† β„‚ ∧ β„‚ βŠ† β„‚) β†’ ((𝐴(,)𝐡)–cn→ℝ) βŠ† ((𝐴(,)𝐡)–cnβ†’β„‚))
7672, 74, 75mp2an 688 . . . . 5 ((𝐴(,)𝐡)–cn→ℝ) βŠ† ((𝐴(,)𝐡)–cnβ†’β„‚)
7776, 3sselid 3979 . . . 4 (πœ‘ β†’ 𝐹 ∈ ((𝐴(,)𝐡)–cnβ†’β„‚))
7873, 70, 11, 9, 77, 25, 14cncfiooicc 44908 . . 3 (πœ‘ β†’ 𝐺 ∈ ((𝐴[,]𝐡)–cnβ†’β„‚))
79 cncfcdm 24638 . . 3 ((ℝ βŠ† β„‚ ∧ 𝐺 ∈ ((𝐴[,]𝐡)–cnβ†’β„‚)) β†’ (𝐺 ∈ ((𝐴[,]𝐡)–cn→ℝ) ↔ 𝐺:(𝐴[,]𝐡)βŸΆβ„))
8072, 78, 79sylancr 585 . 2 (πœ‘ β†’ (𝐺 ∈ ((𝐴[,]𝐡)–cn→ℝ) ↔ 𝐺:(𝐴[,]𝐡)βŸΆβ„))
8171, 80mpbird 256 1 (πœ‘ β†’ 𝐺 ∈ ((𝐴[,]𝐡)–cn→ℝ))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1539  β„²wnf 1783   ∈ wcel 2104   β‰  wne 2938   βŠ† wss 3947  ifcif 4527   class class class wbr 5147   ↦ cmpt 5230  βŸΆwf 6538  β€˜cfv 6542  (class class class)co 7411  β„‚cc 11110  β„cr 11111  β„*cxr 11251   < clt 11252   ≀ cle 11253  (,)cioo 13328  [,]cicc 13331  TopOpenctopn 17371  β„‚fldccnfld 21144  β€“cnβ†’ccncf 24616   limβ„‚ climc 25611
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2701  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7727  ax-cnex 11168  ax-resscn 11169  ax-1cn 11170  ax-icn 11171  ax-addcl 11172  ax-addrcl 11173  ax-mulcl 11174  ax-mulrcl 11175  ax-mulcom 11176  ax-addass 11177  ax-mulass 11178  ax-distr 11179  ax-i2m1 11180  ax-1ne0 11181  ax-1rid 11182  ax-rnegex 11183  ax-rrecex 11184  ax-cnre 11185  ax-pre-lttri 11186  ax-pre-lttrn 11187  ax-pre-ltadd 11188  ax-pre-mulgt0 11189  ax-pre-sup 11190
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2532  df-eu 2561  df-clab 2708  df-cleq 2722  df-clel 2808  df-nfc 2883  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3374  df-reu 3375  df-rab 3431  df-v 3474  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-tp 4632  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-iin 4999  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6299  df-ord 6366  df-on 6367  df-lim 6368  df-suc 6369  df-iota 6494  df-fun 6544  df-fn 6545  df-f 6546  df-f1 6547  df-fo 6548  df-f1o 6549  df-fv 6550  df-riota 7367  df-ov 7414  df-oprab 7415  df-mpo 7416  df-om 7858  df-1st 7977  df-2nd 7978  df-frecs 8268  df-wrecs 8299  df-recs 8373  df-rdg 8412  df-1o 8468  df-er 8705  df-map 8824  df-pm 8825  df-en 8942  df-dom 8943  df-sdom 8944  df-fin 8945  df-fi 9408  df-sup 9439  df-inf 9440  df-pnf 11254  df-mnf 11255  df-xr 11256  df-ltxr 11257  df-le 11258  df-sub 11450  df-neg 11451  df-div 11876  df-nn 12217  df-2 12279  df-3 12280  df-4 12281  df-5 12282  df-6 12283  df-7 12284  df-8 12285  df-9 12286  df-n0 12477  df-z 12563  df-dec 12682  df-uz 12827  df-q 12937  df-rp 12979  df-xneg 13096  df-xadd 13097  df-xmul 13098  df-ioo 13332  df-ioc 13333  df-ico 13334  df-icc 13335  df-fz 13489  df-seq 13971  df-exp 14032  df-cj 15050  df-re 15051  df-im 15052  df-sqrt 15186  df-abs 15187  df-struct 17084  df-slot 17119  df-ndx 17131  df-base 17149  df-plusg 17214  df-mulr 17215  df-starv 17216  df-tset 17220  df-ple 17221  df-ds 17223  df-unif 17224  df-rest 17372  df-topn 17373  df-topgen 17393  df-psmet 21136  df-xmet 21137  df-met 21138  df-bl 21139  df-mopn 21140  df-cnfld 21145  df-top 22616  df-topon 22633  df-topsp 22655  df-bases 22669  df-cld 22743  df-ntr 22744  df-cls 22745  df-nei 22822  df-lp 22860  df-cn 22951  df-cnp 22952  df-xms 24046  df-ms 24047  df-cncf 24618  df-limc 25615
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator