Proof of Theorem cncfiooiccre
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | iftrue 4531 | . . . . . . 7
⊢ (𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝑅) | 
| 2 | 1 | adantl 481 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝑅) | 
| 3 |  | cncfiooiccre.f | . . . . . . . . 9
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ)) | 
| 4 |  | cncff 24919 | . . . . . . . . 9
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℝ) → 𝐹:(𝐴(,)𝐵)⟶ℝ) | 
| 5 | 3, 4 | syl 17 | . . . . . . . 8
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℝ) | 
| 6 |  | ioosscn 13449 | . . . . . . . . 9
⊢ (𝐴(,)𝐵) ⊆ ℂ | 
| 7 | 6 | a1i 11 | . . . . . . . 8
⊢ (𝜑 → (𝐴(,)𝐵) ⊆ ℂ) | 
| 8 |  | eqid 2737 | . . . . . . . . 9
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) | 
| 9 |  | cncfiooiccre.b | . . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 10 | 9 | rexrd 11311 | . . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈
ℝ*) | 
| 11 |  | cncfiooiccre.a | . . . . . . . . 9
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 12 |  | cncfiooiccre.altb | . . . . . . . . 9
⊢ (𝜑 → 𝐴 < 𝐵) | 
| 13 | 8, 10, 11, 12 | lptioo1cn 45661 | . . . . . . . 8
⊢ (𝜑 → 𝐴 ∈
((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵))) | 
| 14 |  | cncfiooiccre.r | . . . . . . . 8
⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) | 
| 15 | 5, 7, 13, 14 | limcrecl 45644 | . . . . . . 7
⊢ (𝜑 → 𝑅 ∈ ℝ) | 
| 16 | 15 | adantr 480 | . . . . . 6
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → 𝑅 ∈ ℝ) | 
| 17 | 2, 16 | eqeltrd 2841 | . . . . 5
⊢ ((𝜑 ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) | 
| 18 | 17 | adantlr 715 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) | 
| 19 |  | iffalse 4534 | . . . . . . . . 9
⊢ (¬
𝑥 = 𝐴 → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) | 
| 20 |  | iftrue 4531 | . . . . . . . . 9
⊢ (𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = 𝐿) | 
| 21 | 19, 20 | sylan9eq 2797 | . . . . . . . 8
⊢ ((¬
𝑥 = 𝐴 ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝐿) | 
| 22 | 21 | adantll 714 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = 𝐿) | 
| 23 | 11 | rexrd 11311 | . . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈
ℝ*) | 
| 24 | 8, 23, 9, 12 | lptioo2cn 45660 | . . . . . . . . 9
⊢ (𝜑 → 𝐵 ∈
((limPt‘(TopOpen‘ℂfld))‘(𝐴(,)𝐵))) | 
| 25 |  | cncfiooiccre.l | . . . . . . . . 9
⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) | 
| 26 | 5, 7, 24, 25 | limcrecl 45644 | . . . . . . . 8
⊢ (𝜑 → 𝐿 ∈ ℝ) | 
| 27 | 26 | ad2antrr 726 | . . . . . . 7
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → 𝐿 ∈ ℝ) | 
| 28 | 22, 27 | eqeltrd 2841 | . . . . . 6
⊢ (((𝜑 ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) | 
| 29 | 28 | adantllr 719 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) | 
| 30 |  | iffalse 4534 | . . . . . . . 8
⊢ (¬
𝑥 = 𝐵 → if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)) = (𝐹‘𝑥)) | 
| 31 | 19, 30 | sylan9eq 2797 | . . . . . . 7
⊢ ((¬
𝑥 = 𝐴 ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) | 
| 32 | 31 | adantll 714 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) = (𝐹‘𝑥)) | 
| 33 | 5 | ad3antrrr 730 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐹:(𝐴(,)𝐵)⟶ℝ) | 
| 34 | 23 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈
ℝ*) | 
| 35 | 10 | ad3antrrr 730 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈
ℝ*) | 
| 36 | 11 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐴 ∈ ℝ) | 
| 37 | 9 | adantr 480 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝐵 ∈ ℝ) | 
| 38 |  | simpr 484 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ (𝐴[,]𝐵)) | 
| 39 |  | eliccre 45518 | . . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) | 
| 40 | 36, 37, 38, 39 | syl3anc 1373 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → 𝑥 ∈ ℝ) | 
| 41 | 40 | ad2antrr 726 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ) | 
| 42 | 11 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈ ℝ) | 
| 43 | 40 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ ℝ) | 
| 44 | 23 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ∈
ℝ*) | 
| 45 | 10 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐵 ∈
ℝ*) | 
| 46 | 38 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ∈ (𝐴[,]𝐵)) | 
| 47 |  | iccgelb 13443 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑥
∈ (𝐴[,]𝐵)) → 𝐴 ≤ 𝑥) | 
| 48 | 44, 45, 46, 47 | syl3anc 1373 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 ≤ 𝑥) | 
| 49 |  | neqne 2948 | . . . . . . . . . . 11
⊢ (¬
𝑥 = 𝐴 → 𝑥 ≠ 𝐴) | 
| 50 | 49 | adantl 481 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝑥 ≠ 𝐴) | 
| 51 | 42, 43, 48, 50 | leneltd 11415 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → 𝐴 < 𝑥) | 
| 52 | 51 | adantr 480 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝐴 < 𝑥) | 
| 53 | 40 | adantr 480 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ ℝ) | 
| 54 | 9 | ad2antrr 726 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈ ℝ) | 
| 55 | 23 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐴 ∈
ℝ*) | 
| 56 | 10 | ad2antrr 726 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ∈
ℝ*) | 
| 57 | 38 | adantr 480 | . . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴[,]𝐵)) | 
| 58 |  | iccleub 13442 | . . . . . . . . . . 11
⊢ ((𝐴 ∈ ℝ*
∧ 𝐵 ∈
ℝ* ∧ 𝑥
∈ (𝐴[,]𝐵)) → 𝑥 ≤ 𝐵) | 
| 59 | 55, 56, 57, 58 | syl3anc 1373 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ≤ 𝐵) | 
| 60 |  | neqne 2948 | . . . . . . . . . . . 12
⊢ (¬
𝑥 = 𝐵 → 𝑥 ≠ 𝐵) | 
| 61 | 60 | necomd 2996 | . . . . . . . . . . 11
⊢ (¬
𝑥 = 𝐵 → 𝐵 ≠ 𝑥) | 
| 62 | 61 | adantl 481 | . . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝐵 ≠ 𝑥) | 
| 63 | 53, 54, 59, 62 | leneltd 11415 | . . . . . . . . 9
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵) | 
| 64 | 63 | adantlr 715 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 < 𝐵) | 
| 65 | 34, 35, 41, 52, 64 | eliood 45511 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → 𝑥 ∈ (𝐴(,)𝐵)) | 
| 66 | 33, 65 | ffvelcdmd 7105 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → (𝐹‘𝑥) ∈ ℝ) | 
| 67 | 32, 66 | eqeltrd 2841 | . . . . 5
⊢ ((((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) ∧ ¬ 𝑥 = 𝐵) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) | 
| 68 | 29, 67 | pm2.61dan 813 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) ∧ ¬ 𝑥 = 𝐴) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) | 
| 69 | 18, 68 | pm2.61dan 813 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ (𝐴[,]𝐵)) → if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥))) ∈ ℝ) | 
| 70 |  | cncfiooiccre.g | . . 3
⊢ 𝐺 = (𝑥 ∈ (𝐴[,]𝐵) ↦ if(𝑥 = 𝐴, 𝑅, if(𝑥 = 𝐵, 𝐿, (𝐹‘𝑥)))) | 
| 71 | 69, 70 | fmptd 7134 | . 2
⊢ (𝜑 → 𝐺:(𝐴[,]𝐵)⟶ℝ) | 
| 72 |  | ax-resscn 11212 | . . 3
⊢ ℝ
⊆ ℂ | 
| 73 |  | cncfiooiccre.x | . . . 4
⊢
Ⅎ𝑥𝜑 | 
| 74 |  | ssid 4006 | . . . . . 6
⊢ ℂ
⊆ ℂ | 
| 75 |  | cncfss 24925 | . . . . . 6
⊢ ((ℝ
⊆ ℂ ∧ ℂ ⊆ ℂ) → ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ)) | 
| 76 | 72, 74, 75 | mp2an 692 | . . . . 5
⊢ ((𝐴(,)𝐵)–cn→ℝ) ⊆ ((𝐴(,)𝐵)–cn→ℂ) | 
| 77 | 76, 3 | sselid 3981 | . . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) | 
| 78 | 73, 70, 11, 9, 77, 25, 14 | cncfiooicc 45909 | . . 3
⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℂ)) | 
| 79 |  | cncfcdm 24924 | . . 3
⊢ ((ℝ
⊆ ℂ ∧ 𝐺
∈ ((𝐴[,]𝐵)–cn→ℂ)) → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℝ)) | 
| 80 | 72, 78, 79 | sylancr 587 | . 2
⊢ (𝜑 → (𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ) ↔ 𝐺:(𝐴[,]𝐵)⟶ℝ)) | 
| 81 | 71, 80 | mpbird 257 | 1
⊢ (𝜑 → 𝐺 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |