| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cncfioobd.a | . . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) | 
| 2 |  | cncfioobd.b | . . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) | 
| 3 |  | nfv 1914 | . . . 4
⊢
Ⅎ𝑧𝜑 | 
| 4 |  | eqid 2737 | . . . 4
⊢ (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) = (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) | 
| 5 |  | cncfioobd.f | . . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) | 
| 6 |  | cncfioobd.l | . . . 4
⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) | 
| 7 |  | cncfioobd.r | . . . 4
⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) | 
| 8 | 3, 4, 1, 2, 5, 6, 7 | cncfiooicc 45909 | . . 3
⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) | 
| 9 |  | cniccbdd 25496 | . . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) | 
| 10 | 1, 2, 8, 9 | syl3anc 1373 | . 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) | 
| 11 |  | nfv 1914 | . . . . . 6
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ ℝ) | 
| 12 |  | nfra1 3284 | . . . . . 6
⊢
Ⅎ𝑦∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 | 
| 13 | 11, 12 | nfan 1899 | . . . . 5
⊢
Ⅎ𝑦((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) | 
| 14 |  | simpr 484 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) | 
| 15 |  | cncff 24919 | . . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) | 
| 16 | 5, 15 | syl 17 | . . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) | 
| 17 | 16 | fdmd 6746 | . . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐹 = (𝐴(,)𝐵)) | 
| 18 | 17 | eqcomd 2743 | . . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴(,)𝐵) = dom 𝐹) | 
| 19 | 18 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) = dom 𝐹) | 
| 20 | 14, 19 | eleqtrd 2843 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom 𝐹) | 
| 21 | 1 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐴 ∈ ℝ) | 
| 22 | 2 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐵 ∈ ℝ) | 
| 23 | 16 | adantr 480 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐹:(𝐴(,)𝐵)⟶ℂ) | 
| 24 |  | simpr 484 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹) | 
| 25 | 17 | adantr 480 | . . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → dom 𝐹 = (𝐴(,)𝐵)) | 
| 26 | 24, 25 | eleqtrd 2843 | . . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ (𝐴(,)𝐵)) | 
| 27 | 21, 22, 23, 4, 26 | cncfioobdlem 45911 | . . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦) = (𝐹‘𝑦)) | 
| 28 | 20, 27 | syldan 591 | . . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦) = (𝐹‘𝑦)) | 
| 29 | 28 | eqcomd 2743 | . . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑦) = ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) | 
| 30 | 29 | fveq2d 6910 | . . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦))) | 
| 31 | 30 | ad4ant14 752 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦))) | 
| 32 |  | simplr 769 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) | 
| 33 |  | ioossicc 13473 | . . . . . . . . 9
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) | 
| 34 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) | 
| 35 | 33, 34 | sselid 3981 | . . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵)) | 
| 36 |  | rspa 3248 | . . . . . . . 8
⊢
((∀𝑦 ∈
(𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) | 
| 37 | 32, 35, 36 | syl2anc 584 | . . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) | 
| 38 | 31, 37 | eqbrtrd 5165 | . . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) ≤ 𝑥) | 
| 39 | 38 | ex 412 | . . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) → (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(𝐹‘𝑦)) ≤ 𝑥)) | 
| 40 | 13, 39 | ralrimi 3257 | . . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) | 
| 41 | 40 | ex 412 | . . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) | 
| 42 | 41 | reximdva 3168 | . 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) | 
| 43 | 10, 42 | mpd 15 | 1
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |