Step | Hyp | Ref
| Expression |
1 | | cncfioobd.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
2 | | cncfioobd.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
3 | | nfv 1918 |
. . . 4
⊢
Ⅎ𝑧𝜑 |
4 | | eqid 2738 |
. . . 4
⊢ (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) = (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) |
5 | | cncfioobd.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
6 | | cncfioobd.l |
. . . 4
⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
7 | | cncfioobd.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) |
8 | 3, 4, 1, 2, 5, 6, 7 | cncfiooicc 43325 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
9 | | cniccbdd 24530 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
10 | 1, 2, 8, 9 | syl3anc 1369 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
11 | | nfv 1918 |
. . . . . 6
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ ℝ) |
12 | | nfra1 3142 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 |
13 | 11, 12 | nfan 1903 |
. . . . 5
⊢
Ⅎ𝑦((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
14 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) |
15 | | cncff 23962 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
16 | 5, 15 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
17 | 16 | fdmd 6595 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐹 = (𝐴(,)𝐵)) |
18 | 17 | eqcomd 2744 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴(,)𝐵) = dom 𝐹) |
19 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) = dom 𝐹) |
20 | 14, 19 | eleqtrd 2841 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom 𝐹) |
21 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐴 ∈ ℝ) |
22 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐵 ∈ ℝ) |
23 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
24 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹) |
25 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → dom 𝐹 = (𝐴(,)𝐵)) |
26 | 24, 25 | eleqtrd 2841 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ (𝐴(,)𝐵)) |
27 | 21, 22, 23, 4, 26 | cncfioobdlem 43327 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦) = (𝐹‘𝑦)) |
28 | 20, 27 | syldan 590 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦) = (𝐹‘𝑦)) |
29 | 28 | eqcomd 2744 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑦) = ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) |
30 | 29 | fveq2d 6760 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦))) |
31 | 30 | ad4ant14 748 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦))) |
32 | | simplr 765 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
33 | | ioossicc 13094 |
. . . . . . . . 9
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
34 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) |
35 | 33, 34 | sselid 3915 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵)) |
36 | | rspa 3130 |
. . . . . . . 8
⊢
((∀𝑦 ∈
(𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
37 | 32, 35, 36 | syl2anc 583 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
38 | 31, 37 | eqbrtrd 5092 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) ≤ 𝑥) |
39 | 38 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) → (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
40 | 13, 39 | ralrimi 3139 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
41 | 40 | ex 412 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
42 | 41 | reximdva 3202 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
43 | 10, 42 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |