| Step | Hyp | Ref
| Expression |
| 1 | | cncfioobd.a |
. . 3
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 2 | | cncfioobd.b |
. . 3
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 3 | | nfv 1914 |
. . . 4
⊢
Ⅎ𝑧𝜑 |
| 4 | | eqid 2736 |
. . . 4
⊢ (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) = (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) |
| 5 | | cncfioobd.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ)) |
| 6 | | cncfioobd.l |
. . . 4
⊢ (𝜑 → 𝐿 ∈ (𝐹 limℂ 𝐵)) |
| 7 | | cncfioobd.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ (𝐹 limℂ 𝐴)) |
| 8 | 3, 4, 1, 2, 5, 6, 7 | cncfiooicc 45890 |
. . 3
⊢ (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) |
| 9 | | cniccbdd 25419 |
. . 3
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 10 | 1, 2, 8, 9 | syl3anc 1373 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 11 | | nfv 1914 |
. . . . . 6
⊢
Ⅎ𝑦(𝜑 ∧ 𝑥 ∈ ℝ) |
| 12 | | nfra1 3270 |
. . . . . 6
⊢
Ⅎ𝑦∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 |
| 13 | 11, 12 | nfan 1899 |
. . . . 5
⊢
Ⅎ𝑦((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 14 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) |
| 15 | | cncff 24842 |
. . . . . . . . . . . . . . . 16
⊢ (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 16 | 5, 15 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 17 | 16 | fdmd 6721 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → dom 𝐹 = (𝐴(,)𝐵)) |
| 18 | 17 | eqcomd 2742 |
. . . . . . . . . . . . 13
⊢ (𝜑 → (𝐴(,)𝐵) = dom 𝐹) |
| 19 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) = dom 𝐹) |
| 20 | 14, 19 | eleqtrd 2837 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom 𝐹) |
| 21 | 1 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐴 ∈ ℝ) |
| 22 | 2 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐵 ∈ ℝ) |
| 23 | 16 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝐹:(𝐴(,)𝐵)⟶ℂ) |
| 24 | | simpr 484 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹) |
| 25 | 17 | adantr 480 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → dom 𝐹 = (𝐴(,)𝐵)) |
| 26 | 24, 25 | eleqtrd 2837 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → 𝑦 ∈ (𝐴(,)𝐵)) |
| 27 | 21, 22, 23, 4, 26 | cncfioobdlem 45892 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑦 ∈ dom 𝐹) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦) = (𝐹‘𝑦)) |
| 28 | 20, 27 | syldan 591 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦) = (𝐹‘𝑦)) |
| 29 | 28 | eqcomd 2742 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (𝐹‘𝑦) = ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) |
| 30 | 29 | fveq2d 6885 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦))) |
| 31 | 30 | ad4ant14 752 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦))) |
| 32 | | simplr 768 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 33 | | ioossicc 13455 |
. . . . . . . . 9
⊢ (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵) |
| 34 | | simpr 484 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵)) |
| 35 | 33, 34 | sselid 3961 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵)) |
| 36 | | rspa 3235 |
. . . . . . . 8
⊢
((∀𝑦 ∈
(𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 ∧ 𝑦 ∈ (𝐴[,]𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 37 | 32, 35, 36 | syl2anc 584 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) |
| 38 | 31, 37 | eqbrtrd 5146 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹‘𝑦)) ≤ 𝑥) |
| 39 | 38 | ex 412 |
. . . . 5
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) → (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
| 40 | 13, 39 | ralrimi 3244 |
. . . 4
⊢ (((𝜑 ∧ 𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |
| 41 | 40 | ex 412 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
| 42 | 41 | reximdva 3154 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹‘𝑧))))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥)) |
| 43 | 10, 42 | mpd 15 |
1
⊢ (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹‘𝑦)) ≤ 𝑥) |