Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cncfioobd Structured version   Visualization version   GIF version

Theorem cncfioobd 41052
Description: A continuous function 𝐹 on an open interval (𝐴(,)𝐵) with a finite right limit 𝑅 in 𝐴 and a finite left limit 𝐿 in 𝐵 is bounded. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
cncfioobd.a (𝜑𝐴 ∈ ℝ)
cncfioobd.b (𝜑𝐵 ∈ ℝ)
cncfioobd.f (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
cncfioobd.l (𝜑𝐿 ∈ (𝐹 lim 𝐵))
cncfioobd.r (𝜑𝑅 ∈ (𝐹 lim 𝐴))
Assertion
Ref Expression
cncfioobd (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥)
Distinct variable groups:   𝑥,𝐴,𝑦   𝑥,𝐵,𝑦   𝑥,𝐹,𝑦   𝑥,𝐿,𝑦   𝑥,𝑅,𝑦   𝜑,𝑥,𝑦

Proof of Theorem cncfioobd
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 cncfioobd.a . . 3 (𝜑𝐴 ∈ ℝ)
2 cncfioobd.b . . 3 (𝜑𝐵 ∈ ℝ)
3 nfv 1957 . . . 4 𝑧𝜑
4 eqid 2778 . . . 4 (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧)))) = (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))
5 cncfioobd.f . . . 4 (𝜑𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ))
6 cncfioobd.l . . . 4 (𝜑𝐿 ∈ (𝐹 lim 𝐵))
7 cncfioobd.r . . . 4 (𝜑𝑅 ∈ (𝐹 lim 𝐴))
83, 4, 1, 2, 5, 6, 7cncfiooicc 41049 . . 3 (𝜑 → (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ))
9 cniccbdd 23676 . . 3 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ (𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧)))) ∈ ((𝐴[,]𝐵)–cn→ℂ)) → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
101, 2, 8, 9syl3anc 1439 . 2 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
11 nfv 1957 . . . . . 6 𝑦(𝜑𝑥 ∈ ℝ)
12 nfra1 3123 . . . . . 6 𝑦𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥
1311, 12nfan 1946 . . . . 5 𝑦((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
14 simpr 479 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
15 cncff 23115 . . . . . . . . . . . . . . . 16 (𝐹 ∈ ((𝐴(,)𝐵)–cn→ℂ) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
165, 15syl 17 . . . . . . . . . . . . . . 15 (𝜑𝐹:(𝐴(,)𝐵)⟶ℂ)
1716fdmd 6302 . . . . . . . . . . . . . 14 (𝜑 → dom 𝐹 = (𝐴(,)𝐵))
1817eqcomd 2784 . . . . . . . . . . . . 13 (𝜑 → (𝐴(,)𝐵) = dom 𝐹)
1918adantr 474 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐴(,)𝐵) = dom 𝐹)
2014, 19eleqtrd 2861 . . . . . . . . . . 11 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ dom 𝐹)
211adantr 474 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ dom 𝐹) → 𝐴 ∈ ℝ)
222adantr 474 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ dom 𝐹) → 𝐵 ∈ ℝ)
2316adantr 474 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ dom 𝐹) → 𝐹:(𝐴(,)𝐵)⟶ℂ)
24 simpr 479 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ dom 𝐹) → 𝑦 ∈ dom 𝐹)
2517adantr 474 . . . . . . . . . . . . 13 ((𝜑𝑦 ∈ dom 𝐹) → dom 𝐹 = (𝐴(,)𝐵))
2624, 25eleqtrd 2861 . . . . . . . . . . . 12 ((𝜑𝑦 ∈ dom 𝐹) → 𝑦 ∈ (𝐴(,)𝐵))
2721, 22, 23, 4, 26cncfioobdlem 41051 . . . . . . . . . . 11 ((𝜑𝑦 ∈ dom 𝐹) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦) = (𝐹𝑦))
2820, 27syldan 585 . . . . . . . . . 10 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦) = (𝐹𝑦))
2928eqcomd 2784 . . . . . . . . 9 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (𝐹𝑦) = ((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦))
3029fveq2d 6452 . . . . . . . 8 ((𝜑𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)))
3130ad4ant14 742 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑦)) = (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)))
32 simplr 759 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
33 ioossicc 12576 . . . . . . . . 9 (𝐴(,)𝐵) ⊆ (𝐴[,]𝐵)
34 simpr 479 . . . . . . . . 9 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴(,)𝐵))
3533, 34sseldi 3819 . . . . . . . 8 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → 𝑦 ∈ (𝐴[,]𝐵))
36 rspa 3112 . . . . . . . 8 ((∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥𝑦 ∈ (𝐴[,]𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
3732, 35, 36syl2anc 579 . . . . . . 7 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥)
3831, 37eqbrtrd 4910 . . . . . 6 ((((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) ∧ 𝑦 ∈ (𝐴(,)𝐵)) → (abs‘(𝐹𝑦)) ≤ 𝑥)
3938ex 403 . . . . 5 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) → (𝑦 ∈ (𝐴(,)𝐵) → (abs‘(𝐹𝑦)) ≤ 𝑥))
4013, 39ralrimi 3139 . . . 4 (((𝜑𝑥 ∈ ℝ) ∧ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥) → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥)
4140ex 403 . . 3 ((𝜑𝑥 ∈ ℝ) → (∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥 → ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥))
4241reximdva 3198 . 2 (𝜑 → (∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴[,]𝐵)(abs‘((𝑧 ∈ (𝐴[,]𝐵) ↦ if(𝑧 = 𝐴, 𝑅, if(𝑧 = 𝐵, 𝐿, (𝐹𝑧))))‘𝑦)) ≤ 𝑥 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥))
4310, 42mpd 15 1 (𝜑 → ∃𝑥 ∈ ℝ ∀𝑦 ∈ (𝐴(,)𝐵)(abs‘(𝐹𝑦)) ≤ 𝑥)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 386   = wceq 1601  wcel 2107  wral 3090  wrex 3091  ifcif 4307   class class class wbr 4888  cmpt 4967  dom cdm 5357  wf 6133  cfv 6137  (class class class)co 6924  cc 10272  cr 10273  cle 10414  (,)cioo 12492  [,]cicc 12495  abscabs 14387  cnccncf 23098   lim climc 24074
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-rep 5008  ax-sep 5019  ax-nul 5027  ax-pow 5079  ax-pr 5140  ax-un 7228  ax-inf2 8837  ax-cnex 10330  ax-resscn 10331  ax-1cn 10332  ax-icn 10333  ax-addcl 10334  ax-addrcl 10335  ax-mulcl 10336  ax-mulrcl 10337  ax-mulcom 10338  ax-addass 10339  ax-mulass 10340  ax-distr 10341  ax-i2m1 10342  ax-1ne0 10343  ax-1rid 10344  ax-rnegex 10345  ax-rrecex 10346  ax-cnre 10347  ax-pre-lttri 10348  ax-pre-lttrn 10349  ax-pre-ltadd 10350  ax-pre-mulgt0 10351  ax-pre-sup 10352  ax-mulf 10354
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3or 1072  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ne 2970  df-nel 3076  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-pss 3808  df-nul 4142  df-if 4308  df-pw 4381  df-sn 4399  df-pr 4401  df-tp 4403  df-op 4405  df-uni 4674  df-int 4713  df-iun 4757  df-iin 4758  df-br 4889  df-opab 4951  df-mpt 4968  df-tr 4990  df-id 5263  df-eprel 5268  df-po 5276  df-so 5277  df-fr 5316  df-se 5317  df-we 5318  df-xp 5363  df-rel 5364  df-cnv 5365  df-co 5366  df-dm 5367  df-rn 5368  df-res 5369  df-ima 5370  df-pred 5935  df-ord 5981  df-on 5982  df-lim 5983  df-suc 5984  df-iota 6101  df-fun 6139  df-fn 6140  df-f 6141  df-f1 6142  df-fo 6143  df-f1o 6144  df-fv 6145  df-isom 6146  df-riota 6885  df-ov 6927  df-oprab 6928  df-mpt2 6929  df-of 7176  df-om 7346  df-1st 7447  df-2nd 7448  df-supp 7579  df-wrecs 7691  df-recs 7753  df-rdg 7791  df-1o 7845  df-2o 7846  df-oadd 7849  df-er 8028  df-map 8144  df-pm 8145  df-ixp 8197  df-en 8244  df-dom 8245  df-sdom 8246  df-fin 8247  df-fsupp 8566  df-fi 8607  df-sup 8638  df-inf 8639  df-oi 8706  df-card 9100  df-cda 9327  df-pnf 10415  df-mnf 10416  df-xr 10417  df-ltxr 10418  df-le 10419  df-sub 10610  df-neg 10611  df-div 11036  df-nn 11380  df-2 11443  df-3 11444  df-4 11445  df-5 11446  df-6 11447  df-7 11448  df-8 11449  df-9 11450  df-n0 11648  df-z 11734  df-dec 11851  df-uz 11998  df-q 12101  df-rp 12143  df-xneg 12262  df-xadd 12263  df-xmul 12264  df-ioo 12496  df-ioc 12497  df-ico 12498  df-icc 12499  df-fz 12649  df-fzo 12790  df-seq 13125  df-exp 13184  df-hash 13442  df-cj 14252  df-re 14253  df-im 14254  df-sqrt 14388  df-abs 14389  df-struct 16268  df-ndx 16269  df-slot 16270  df-base 16272  df-sets 16273  df-ress 16274  df-plusg 16362  df-mulr 16363  df-starv 16364  df-sca 16365  df-vsca 16366  df-ip 16367  df-tset 16368  df-ple 16369  df-ds 16371  df-unif 16372  df-hom 16373  df-cco 16374  df-rest 16480  df-topn 16481  df-0g 16499  df-gsum 16500  df-topgen 16501  df-pt 16502  df-prds 16505  df-xrs 16559  df-qtop 16564  df-imas 16565  df-xps 16567  df-mre 16643  df-mrc 16644  df-acs 16646  df-mgm 17639  df-sgrp 17681  df-mnd 17692  df-submnd 17733  df-mulg 17939  df-cntz 18144  df-cmn 18592  df-psmet 20145  df-xmet 20146  df-met 20147  df-bl 20148  df-mopn 20149  df-cnfld 20154  df-top 21117  df-topon 21134  df-topsp 21156  df-bases 21169  df-cld 21242  df-ntr 21243  df-cls 21244  df-cn 21450  df-cnp 21451  df-cmp 21610  df-tx 21785  df-hmeo 21978  df-xms 22544  df-ms 22545  df-tms 22546  df-cncf 23100  df-limc 24078
This theorem is referenced by:  fourierdlem70  41334  fourierdlem71  41335
  Copyright terms: Public domain W3C validator