MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofcut1d Structured version   Visualization version   GIF version

Theorem cofcut1d 27970
Description: If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.)
Hypotheses
Ref Expression
cofcut1d.1 (𝜑𝐴 <<s 𝐵)
cofcut1d.2 (𝜑 → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
cofcut1d.3 (𝜑 → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
cofcut1d.4 (𝜑𝐶 <<s {(𝐴 |s 𝐵)})
cofcut1d.5 (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷)
Assertion
Ref Expression
cofcut1d (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑧,𝐵   𝑥,𝐶,𝑦   𝑤,𝐷,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐶(𝑧,𝑤)   𝐷(𝑥,𝑦)

Proof of Theorem cofcut1d
StepHypRef Expression
1 cofcut1d.1 . 2 (𝜑𝐴 <<s 𝐵)
2 cofcut1d.2 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
3 cofcut1d.3 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
4 cofcut1d.4 . 2 (𝜑𝐶 <<s {(𝐴 |s 𝐵)})
5 cofcut1d.5 . 2 (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷)
6 cofcut1 27969 . 2 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
71, 2, 3, 4, 5, 6syl122anc 1378 1 (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wral 3059  wrex 3068  {csn 4631   class class class wbr 5148  (class class class)co 7431   ≤s csle 27804   <<s csslt 27840   |s cscut 27842
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-uni 4913  df-int 4952  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-ord 6389  df-on 6390  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-1o 8505  df-2o 8506  df-no 27702  df-slt 27703  df-bday 27704  df-sle 27805  df-sslt 27841  df-scut 27843
This theorem is referenced by:  cutmax  27983  cutmin  27984  addsuniflem  28049  negsunif  28102  mulsuniflem  28190  zscut  28408  halfcut  28431  addhalfcut  28434
  Copyright terms: Public domain W3C validator