| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofcut1d | Structured version Visualization version GIF version | ||
| Description: If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| cofcut1d.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| cofcut1d.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) |
| cofcut1d.3 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) |
| cofcut1d.4 | ⊢ (𝜑 → 𝐶 <<s {(𝐴 |s 𝐵)}) |
| cofcut1d.5 | ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷) |
| Ref | Expression |
|---|---|
| cofcut1d | ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofcut1d.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | cofcut1d.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) | |
| 3 | cofcut1d.3 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) | |
| 4 | cofcut1d.4 | . 2 ⊢ (𝜑 → 𝐶 <<s {(𝐴 |s 𝐵)}) | |
| 5 | cofcut1d.5 | . 2 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷) | |
| 6 | cofcut1 27828 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | |
| 7 | 1, 2, 3, 4, 5, 6 | syl122anc 1381 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3044 ∃wrex 3053 {csn 4589 class class class wbr 5107 (class class class)co 7387 ≤s csle 27656 <<s csslt 27692 |s cscut 27694 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3354 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-tp 4594 df-op 4596 df-uni 4872 df-int 4911 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-ord 6335 df-on 6336 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-1o 8434 df-2o 8435 df-no 27554 df-slt 27555 df-bday 27556 df-sle 27657 df-sslt 27693 df-scut 27695 |
| This theorem is referenced by: cutmax 27842 cutmin 27843 addsuniflem 27908 negsunif 27961 mulsuniflem 28052 n0sfincut 28246 zscut 28295 halfcut 28333 addhalfcut 28334 |
| Copyright terms: Public domain | W3C validator |