| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofcut1d | Structured version Visualization version GIF version | ||
| Description: If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| cofcut1d.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| cofcut1d.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) |
| cofcut1d.3 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) |
| cofcut1d.4 | ⊢ (𝜑 → 𝐶 <<s {(𝐴 |s 𝐵)}) |
| cofcut1d.5 | ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷) |
| Ref | Expression |
|---|---|
| cofcut1d | ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofcut1d.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | cofcut1d.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) | |
| 3 | cofcut1d.3 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) | |
| 4 | cofcut1d.4 | . 2 ⊢ (𝜑 → 𝐶 <<s {(𝐴 |s 𝐵)}) | |
| 5 | cofcut1d.5 | . 2 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷) | |
| 6 | cofcut1 27885 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | |
| 7 | 1, 2, 3, 4, 5, 6 | syl122anc 1381 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3052 ∃wrex 3061 {csn 4606 class class class wbr 5124 (class class class)co 7410 ≤s csle 27713 <<s csslt 27749 |s cscut 27751 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2708 ax-rep 5254 ax-sep 5271 ax-nul 5281 ax-pow 5340 ax-pr 5407 ax-un 7734 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2728 df-clel 2810 df-nfc 2886 df-ne 2934 df-ral 3053 df-rex 3062 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3771 df-csb 3880 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-tp 4611 df-op 4613 df-uni 4889 df-int 4928 df-br 5125 df-opab 5187 df-mpt 5207 df-tr 5235 df-id 5553 df-eprel 5558 df-po 5566 df-so 5567 df-fr 5611 df-we 5613 df-xp 5665 df-rel 5666 df-cnv 5667 df-co 5668 df-dm 5669 df-rn 5670 df-res 5671 df-ima 5672 df-ord 6360 df-on 6361 df-suc 6363 df-iota 6489 df-fun 6538 df-fn 6539 df-f 6540 df-f1 6541 df-fo 6542 df-f1o 6543 df-fv 6544 df-riota 7367 df-ov 7413 df-oprab 7414 df-mpo 7415 df-1o 8485 df-2o 8486 df-no 27611 df-slt 27612 df-bday 27613 df-sle 27714 df-sslt 27750 df-scut 27752 |
| This theorem is referenced by: cutmax 27899 cutmin 27900 addsuniflem 27965 negsunif 28018 mulsuniflem 28109 n0sfincut 28303 zscut 28352 halfcut 28390 addhalfcut 28391 |
| Copyright terms: Public domain | W3C validator |