![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > cofcut1d | Structured version Visualization version GIF version |
Description: If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.) |
Ref | Expression |
---|---|
cofcut1d.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
cofcut1d.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) |
cofcut1d.3 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) |
cofcut1d.4 | ⊢ (𝜑 → 𝐶 <<s {(𝐴 |s 𝐵)}) |
cofcut1d.5 | ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷) |
Ref | Expression |
---|---|
cofcut1d | ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | cofcut1d.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
2 | cofcut1d.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) | |
3 | cofcut1d.3 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) | |
4 | cofcut1d.4 | . 2 ⊢ (𝜑 → 𝐶 <<s {(𝐴 |s 𝐵)}) | |
5 | cofcut1d.5 | . 2 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷) | |
6 | cofcut1 27969 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | |
7 | 1, 2, 3, 4, 5, 6 | syl122anc 1378 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∀wral 3059 ∃wrex 3068 {csn 4631 class class class wbr 5148 (class class class)co 7431 ≤s csle 27804 <<s csslt 27840 |s cscut 27842 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-rep 5285 ax-sep 5302 ax-nul 5312 ax-pow 5371 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rmo 3378 df-reu 3379 df-rab 3434 df-v 3480 df-sbc 3792 df-csb 3909 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-pss 3983 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-tp 4636 df-op 4638 df-uni 4913 df-int 4952 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5583 df-eprel 5589 df-po 5597 df-so 5598 df-fr 5641 df-we 5643 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-ord 6389 df-on 6390 df-suc 6392 df-iota 6516 df-fun 6565 df-fn 6566 df-f 6567 df-f1 6568 df-fo 6569 df-f1o 6570 df-fv 6571 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-1o 8505 df-2o 8506 df-no 27702 df-slt 27703 df-bday 27704 df-sle 27805 df-sslt 27841 df-scut 27843 |
This theorem is referenced by: cutmax 27983 cutmin 27984 addsuniflem 28049 negsunif 28102 mulsuniflem 28190 zscut 28408 halfcut 28431 addhalfcut 28434 |
Copyright terms: Public domain | W3C validator |