| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > cofcut1d | Structured version Visualization version GIF version | ||
| Description: If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.) |
| Ref | Expression |
|---|---|
| cofcut1d.1 | ⊢ (𝜑 → 𝐴 <<s 𝐵) |
| cofcut1d.2 | ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) |
| cofcut1d.3 | ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) |
| cofcut1d.4 | ⊢ (𝜑 → 𝐶 <<s {(𝐴 |s 𝐵)}) |
| cofcut1d.5 | ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷) |
| Ref | Expression |
|---|---|
| cofcut1d | ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cofcut1d.1 | . 2 ⊢ (𝜑 → 𝐴 <<s 𝐵) | |
| 2 | cofcut1d.2 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦) | |
| 3 | cofcut1d.3 | . 2 ⊢ (𝜑 → ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) | |
| 4 | cofcut1d.4 | . 2 ⊢ (𝜑 → 𝐶 <<s {(𝐴 |s 𝐵)}) | |
| 5 | cofcut1d.5 | . 2 ⊢ (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷) | |
| 6 | cofcut1 27868 | . 2 ⊢ ((𝐴 <<s 𝐵 ∧ (∀𝑥 ∈ 𝐴 ∃𝑦 ∈ 𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧 ∈ 𝐵 ∃𝑤 ∈ 𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) | |
| 7 | 1, 2, 3, 4, 5, 6 | syl122anc 1381 | 1 ⊢ (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1540 ∀wral 3044 ∃wrex 3053 {csn 4585 class class class wbr 5102 (class class class)co 7369 ≤s csle 27689 <<s csslt 27726 |s cscut 27728 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-uni 4868 df-int 4907 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-ord 6323 df-on 6324 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-1o 8411 df-2o 8412 df-no 27587 df-slt 27588 df-bday 27589 df-sle 27690 df-sslt 27727 df-scut 27729 |
| This theorem is referenced by: cutmax 27882 cutmin 27883 addsuniflem 27948 negsunif 28001 mulsuniflem 28092 n0sfincut 28286 zscut 28335 halfcut 28381 addhalfcut 28382 |
| Copyright terms: Public domain | W3C validator |