MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cofcut1d Structured version   Visualization version   GIF version

Theorem cofcut1d 27973
Description: If 𝐶 is cofinal with 𝐴 and 𝐷 is coinitial with 𝐵 and the cut of 𝐴 and 𝐵 lies between 𝐶 and 𝐷, then the cut of 𝐶 and 𝐷 is equal to the cut of 𝐴 and 𝐵. Theorem 2.6 of [Gonshor] p. 10. (Contributed by Scott Fenton, 23-Jan-2025.)
Hypotheses
Ref Expression
cofcut1d.1 (𝜑𝐴 <<s 𝐵)
cofcut1d.2 (𝜑 → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
cofcut1d.3 (𝜑 → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
cofcut1d.4 (𝜑𝐶 <<s {(𝐴 |s 𝐵)})
cofcut1d.5 (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷)
Assertion
Ref Expression
cofcut1d (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Distinct variable groups:   𝑥,𝐴   𝑧,𝐵   𝑥,𝐶,𝑦   𝑤,𝐷,𝑧
Allowed substitution hints:   𝜑(𝑥,𝑦,𝑧,𝑤)   𝐴(𝑦,𝑧,𝑤)   𝐵(𝑥,𝑦,𝑤)   𝐶(𝑧,𝑤)   𝐷(𝑥,𝑦)

Proof of Theorem cofcut1d
StepHypRef Expression
1 cofcut1d.1 . 2 (𝜑𝐴 <<s 𝐵)
2 cofcut1d.2 . 2 (𝜑 → ∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦)
3 cofcut1d.3 . 2 (𝜑 → ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧)
4 cofcut1d.4 . 2 (𝜑𝐶 <<s {(𝐴 |s 𝐵)})
5 cofcut1d.5 . 2 (𝜑 → {(𝐴 |s 𝐵)} <<s 𝐷)
6 cofcut1 27972 . 2 ((𝐴 <<s 𝐵 ∧ (∀𝑥𝐴𝑦𝐶 𝑥 ≤s 𝑦 ∧ ∀𝑧𝐵𝑤𝐷 𝑤 ≤s 𝑧) ∧ (𝐶 <<s {(𝐴 |s 𝐵)} ∧ {(𝐴 |s 𝐵)} <<s 𝐷)) → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
71, 2, 3, 4, 5, 6syl122anc 1379 1 (𝜑 → (𝐴 |s 𝐵) = (𝐶 |s 𝐷))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1537  wral 3067  wrex 3076  {csn 4648   class class class wbr 5166  (class class class)co 7448   ≤s csle 27807   <<s csslt 27843   |s cscut 27845
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1o 8522  df-2o 8523  df-no 27705  df-slt 27706  df-bday 27707  df-sle 27808  df-sslt 27844  df-scut 27846
This theorem is referenced by:  cutmax  27986  cutmin  27987  addsuniflem  28052  negsunif  28105  mulsuniflem  28193  zscut  28411  halfcut  28434  addhalfcut  28437
  Copyright terms: Public domain W3C validator