MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  conjsubg Structured version   Visualization version   GIF version

Theorem conjsubg 18781
Description: A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.)
Hypotheses
Ref Expression
conjghm.x 𝑋 = (Base‘𝐺)
conjghm.p + = (+g𝐺)
conjghm.m = (-g𝐺)
conjsubg.f 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
Assertion
Ref Expression
conjsubg ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺))
Distinct variable groups:   𝑥,   𝑥, +   𝑥,𝐴   𝑥,𝐺   𝑥,𝑆   𝑥,𝑋
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem conjsubg
StepHypRef Expression
1 conjghm.x . . . . 5 𝑋 = (Base‘𝐺)
21subgss 18671 . . . 4 (𝑆 ∈ (SubGrp‘𝐺) → 𝑆𝑋)
32adantr 480 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆𝑋)
4 df-ima 5593 . . . 4 ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) “ 𝑆) = ran ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆)
5 resmpt 5934 . . . . . 6 (𝑆𝑋 → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴)))
6 conjsubg.f . . . . . 6 𝐹 = (𝑥𝑆 ↦ ((𝐴 + 𝑥) 𝐴))
75, 6eqtr4di 2797 . . . . 5 (𝑆𝑋 → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = 𝐹)
87rneqd 5836 . . . 4 (𝑆𝑋 → ran ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ↾ 𝑆) = ran 𝐹)
94, 8eqtrid 2790 . . 3 (𝑆𝑋 → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) “ 𝑆) = ran 𝐹)
103, 9syl 17 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) “ 𝑆) = ran 𝐹)
11 subgrcl 18675 . . . . 5 (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp)
12 conjghm.p . . . . . 6 + = (+g𝐺)
13 conjghm.m . . . . . 6 = (-g𝐺)
14 eqid 2738 . . . . . 6 (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) = (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴))
151, 12, 13, 14conjghm 18780 . . . . 5 ((𝐺 ∈ Grp ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
1611, 15sylan 579 . . . 4 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)):𝑋1-1-onto𝑋))
1716simpld 494 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → (𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺))
18 simpl 482 . . 3 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → 𝑆 ∈ (SubGrp‘𝐺))
19 ghmima 18770 . . 3 (((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) “ 𝑆) ∈ (SubGrp‘𝐺))
2017, 18, 19syl2anc 583 . 2 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ((𝑥𝑋 ↦ ((𝐴 + 𝑥) 𝐴)) “ 𝑆) ∈ (SubGrp‘𝐺))
2110, 20eqeltrrd 2840 1 ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  wss 3883  cmpt 5153  ran crn 5581  cres 5582  cima 5583  1-1-ontowf1o 6417  cfv 6418  (class class class)co 7255  Basecbs 16840  +gcplusg 16888  Grpcgrp 18492  -gcsg 18494  SubGrpcsubg 18664   GrpHom cghm 18746
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-er 8456  df-en 8692  df-dom 8693  df-sdom 8694  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-0g 17069  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-grp 18495  df-minusg 18496  df-sbg 18497  df-subg 18667  df-ghm 18747
This theorem is referenced by:  slwhash  19144  sylow2  19146  sylow3lem1  19147
  Copyright terms: Public domain W3C validator