Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > conjsubg | Structured version Visualization version GIF version |
Description: A conjugated subgroup is also a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015.) |
Ref | Expression |
---|---|
conjghm.x | ⊢ 𝑋 = (Base‘𝐺) |
conjghm.p | ⊢ + = (+g‘𝐺) |
conjghm.m | ⊢ − = (-g‘𝐺) |
conjsubg.f | ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) |
Ref | Expression |
---|---|
conjsubg | ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | conjghm.x | . . . . 5 ⊢ 𝑋 = (Base‘𝐺) | |
2 | 1 | subgss 18853 | . . . 4 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝑆 ⊆ 𝑋) |
3 | 2 | adantr 481 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ⊆ 𝑋) |
4 | df-ima 5634 | . . . 4 ⊢ ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) “ 𝑆) = ran ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) | |
5 | resmpt 5978 | . . . . . 6 ⊢ (𝑆 ⊆ 𝑋 → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴))) | |
6 | conjsubg.f | . . . . . 6 ⊢ 𝐹 = (𝑥 ∈ 𝑆 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
7 | 5, 6 | eqtr4di 2794 | . . . . 5 ⊢ (𝑆 ⊆ 𝑋 → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = 𝐹) |
8 | 7 | rneqd 5880 | . . . 4 ⊢ (𝑆 ⊆ 𝑋 → ran ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ↾ 𝑆) = ran 𝐹) |
9 | 4, 8 | eqtrid 2788 | . . 3 ⊢ (𝑆 ⊆ 𝑋 → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) “ 𝑆) = ran 𝐹) |
10 | 3, 9 | syl 17 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) “ 𝑆) = ran 𝐹) |
11 | subgrcl 18857 | . . . . 5 ⊢ (𝑆 ∈ (SubGrp‘𝐺) → 𝐺 ∈ Grp) | |
12 | conjghm.p | . . . . . 6 ⊢ + = (+g‘𝐺) | |
13 | conjghm.m | . . . . . 6 ⊢ − = (-g‘𝐺) | |
14 | eqid 2736 | . . . . . 6 ⊢ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) = (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) | |
15 | 1, 12, 13, 14 | conjghm 18962 | . . . . 5 ⊢ ((𝐺 ∈ Grp ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋)) |
16 | 11, 15 | sylan 580 | . . . 4 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)):𝑋–1-1-onto→𝑋)) |
17 | 16 | simpld 495 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → (𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺)) |
18 | simpl 483 | . . 3 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → 𝑆 ∈ (SubGrp‘𝐺)) | |
19 | ghmima 18952 | . . 3 ⊢ (((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) ∈ (𝐺 GrpHom 𝐺) ∧ 𝑆 ∈ (SubGrp‘𝐺)) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) “ 𝑆) ∈ (SubGrp‘𝐺)) | |
20 | 17, 18, 19 | syl2anc 584 | . 2 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ((𝑥 ∈ 𝑋 ↦ ((𝐴 + 𝑥) − 𝐴)) “ 𝑆) ∈ (SubGrp‘𝐺)) |
21 | 10, 20 | eqeltrrd 2838 | 1 ⊢ ((𝑆 ∈ (SubGrp‘𝐺) ∧ 𝐴 ∈ 𝑋) → ran 𝐹 ∈ (SubGrp‘𝐺)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 ⊆ wss 3898 ↦ cmpt 5176 ran crn 5622 ↾ cres 5623 “ cima 5624 –1-1-onto→wf1o 6479 ‘cfv 6480 (class class class)co 7338 Basecbs 17010 +gcplusg 17060 Grpcgrp 18674 -gcsg 18676 SubGrpcsubg 18846 GrpHom cghm 18928 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5230 ax-sep 5244 ax-nul 5251 ax-pow 5309 ax-pr 5373 ax-un 7651 ax-cnex 11029 ax-resscn 11030 ax-1cn 11031 ax-icn 11032 ax-addcl 11033 ax-addrcl 11034 ax-mulcl 11035 ax-mulrcl 11036 ax-mulcom 11037 ax-addass 11038 ax-mulass 11039 ax-distr 11040 ax-i2m1 11041 ax-1ne0 11042 ax-1rid 11043 ax-rnegex 11044 ax-rrecex 11045 ax-cnre 11046 ax-pre-lttri 11047 ax-pre-lttrn 11048 ax-pre-ltadd 11049 ax-pre-mulgt0 11050 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4271 df-if 4475 df-pw 4550 df-sn 4575 df-pr 4577 df-op 4581 df-uni 4854 df-iun 4944 df-br 5094 df-opab 5156 df-mpt 5177 df-tr 5211 df-id 5519 df-eprel 5525 df-po 5533 df-so 5534 df-fr 5576 df-we 5578 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6239 df-ord 6306 df-on 6307 df-lim 6308 df-suc 6309 df-iota 6432 df-fun 6482 df-fn 6483 df-f 6484 df-f1 6485 df-fo 6486 df-f1o 6487 df-fv 6488 df-riota 7294 df-ov 7341 df-oprab 7342 df-mpo 7343 df-om 7782 df-1st 7900 df-2nd 7901 df-frecs 8168 df-wrecs 8199 df-recs 8273 df-rdg 8312 df-er 8570 df-en 8806 df-dom 8807 df-sdom 8808 df-pnf 11113 df-mnf 11114 df-xr 11115 df-ltxr 11116 df-le 11117 df-sub 11309 df-neg 11310 df-nn 12076 df-2 12138 df-sets 16963 df-slot 16981 df-ndx 16993 df-base 17011 df-ress 17040 df-plusg 17073 df-0g 17250 df-mgm 18424 df-sgrp 18473 df-mnd 18484 df-grp 18677 df-minusg 18678 df-sbg 18679 df-subg 18849 df-ghm 18929 |
This theorem is referenced by: slwhash 19326 sylow2 19328 sylow3lem1 19329 |
Copyright terms: Public domain | W3C validator |