Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evlsgsummul | Structured version Visualization version GIF version |
Description: Polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by SN, 13-Feb-2024.) |
Ref | Expression |
---|---|
evlsgsummul.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlsgsummul.w | ⊢ 𝑊 = (𝐼 mPoly 𝑈) |
evlsgsummul.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evlsgsummul.1 | ⊢ 1 = (1r‘𝑊) |
evlsgsummul.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsgsummul.p | ⊢ 𝑃 = (𝑆 ↑s (𝐾 ↑m 𝐼)) |
evlsgsummul.h | ⊢ 𝐻 = (mulGrp‘𝑃) |
evlsgsummul.k | ⊢ 𝐾 = (Base‘𝑆) |
evlsgsummul.b | ⊢ 𝐵 = (Base‘𝑊) |
evlsgsummul.i | ⊢ (𝜑 → 𝐼 ∈ 𝑉) |
evlsgsummul.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsgsummul.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsgsummul.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
evlsgsummul.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
evlsgsummul.f | ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) |
Ref | Expression |
---|---|
evlsgsummul | ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsgsummul.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑊) | |
2 | evlsgsummul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 1, 2 | mgpbas 19707 | . . 3 ⊢ 𝐵 = (Base‘𝐺) |
4 | evlsgsummul.1 | . . . 4 ⊢ 1 = (1r‘𝑊) | |
5 | 1, 4 | ringidval 19720 | . . 3 ⊢ 1 = (0g‘𝐺) |
6 | evlsgsummul.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑉) | |
7 | evlsgsummul.s | . . . . . 6 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
8 | evlsgsummul.r | . . . . . 6 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
9 | evlsgsummul.u | . . . . . . 7 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
10 | 9 | subrgcrng 20009 | . . . . . 6 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) |
11 | 7, 8, 10 | syl2anc 583 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ CRing) |
12 | evlsgsummul.w | . . . . . 6 ⊢ 𝑊 = (𝐼 mPoly 𝑈) | |
13 | 12 | mplcrng 21207 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑈 ∈ CRing) → 𝑊 ∈ CRing) |
14 | 6, 11, 13 | syl2anc 583 | . . . 4 ⊢ (𝜑 → 𝑊 ∈ CRing) |
15 | 1 | crngmgp 19772 | . . . 4 ⊢ (𝑊 ∈ CRing → 𝐺 ∈ CMnd) |
16 | 14, 15 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
17 | crngring 19776 | . . . . . 6 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
18 | 7, 17 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Ring) |
19 | ovex 7301 | . . . . 5 ⊢ (𝐾 ↑m 𝐼) ∈ V | |
20 | 18, 19 | jctir 520 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ Ring ∧ (𝐾 ↑m 𝐼) ∈ V)) |
21 | evlsgsummul.p | . . . . 5 ⊢ 𝑃 = (𝑆 ↑s (𝐾 ↑m 𝐼)) | |
22 | 21 | pwsring 19835 | . . . 4 ⊢ ((𝑆 ∈ Ring ∧ (𝐾 ↑m 𝐼) ∈ V) → 𝑃 ∈ Ring) |
23 | evlsgsummul.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑃) | |
24 | 23 | ringmgp 19770 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝐻 ∈ Mnd) |
25 | 20, 22, 24 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
26 | nn0ex 12222 | . . . . 5 ⊢ ℕ0 ∈ V | |
27 | 26 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
28 | evlsgsummul.n | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
29 | 27, 28 | ssexd 5251 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
30 | evlsgsummul.q | . . . . . 6 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
31 | evlsgsummul.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
32 | 30, 12, 9, 21, 31 | evlsrhm 21279 | . . . . 5 ⊢ ((𝐼 ∈ 𝑉 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑃)) |
33 | 6, 7, 8, 32 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom 𝑃)) |
34 | 1, 23 | rhmmhm 19947 | . . . 4 ⊢ (𝑄 ∈ (𝑊 RingHom 𝑃) → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
35 | 33, 34 | syl 17 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
36 | evlsgsummul.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) | |
37 | evlsgsummul.f | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) | |
38 | 3, 5, 16, 25, 29, 35, 36, 37 | gsummptmhm 19522 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌))) = (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
39 | 38 | eqcomd 2745 | 1 ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2109 Vcvv 3430 ⊆ wss 3891 class class class wbr 5078 ↦ cmpt 5161 ‘cfv 6430 (class class class)co 7268 ↑m cmap 8589 finSupp cfsupp 9089 ℕ0cn0 12216 Basecbs 16893 ↾s cress 16922 Σg cgsu 17132 ↑s cpws 17138 Mndcmnd 18366 MndHom cmhm 18409 CMndccmn 19367 mulGrpcmgp 19701 1rcur 19718 Ringcrg 19764 CRingccrg 19765 RingHom crh 19937 SubRingcsubrg 20001 mPoly cmpl 21090 evalSub ces 21261 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-iin 4932 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-of 7524 df-ofr 7525 df-om 7701 df-1st 7817 df-2nd 7818 df-supp 7962 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-map 8591 df-pm 8592 df-ixp 8660 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-fsupp 9090 df-sup 9162 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-nn 11957 df-2 12019 df-3 12020 df-4 12021 df-5 12022 df-6 12023 df-7 12024 df-8 12025 df-9 12026 df-n0 12217 df-z 12303 df-dec 12420 df-uz 12565 df-fz 13222 df-fzo 13365 df-seq 13703 df-hash 14026 df-struct 16829 df-sets 16846 df-slot 16864 df-ndx 16876 df-base 16894 df-ress 16923 df-plusg 16956 df-mulr 16957 df-sca 16959 df-vsca 16960 df-ip 16961 df-tset 16962 df-ple 16963 df-ds 16965 df-hom 16967 df-cco 16968 df-0g 17133 df-gsum 17134 df-prds 17139 df-pws 17141 df-mre 17276 df-mrc 17277 df-acs 17279 df-mgm 18307 df-sgrp 18356 df-mnd 18367 df-mhm 18411 df-submnd 18412 df-grp 18561 df-minusg 18562 df-sbg 18563 df-mulg 18682 df-subg 18733 df-ghm 18813 df-cntz 18904 df-cmn 19369 df-abl 19370 df-mgp 19702 df-ur 19719 df-srg 19723 df-ring 19766 df-cring 19767 df-rnghom 19940 df-subrg 20003 df-lmod 20106 df-lss 20175 df-lsp 20215 df-assa 21041 df-asp 21042 df-ascl 21043 df-psr 21093 df-mvr 21094 df-mpl 21095 df-evls 21263 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |