MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsgsummul Structured version   Visualization version   GIF version

Theorem evlsgsummul 22035
Description: Polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by SN, 13-Feb-2024.)
Hypotheses
Ref Expression
evlsgsummul.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsgsummul.w 𝑊 = (𝐼 mPoly 𝑈)
evlsgsummul.g 𝐺 = (mulGrp‘𝑊)
evlsgsummul.1 1 = (1r𝑊)
evlsgsummul.u 𝑈 = (𝑆s 𝑅)
evlsgsummul.p 𝑃 = (𝑆s (𝐾m 𝐼))
evlsgsummul.h 𝐻 = (mulGrp‘𝑃)
evlsgsummul.k 𝐾 = (Base‘𝑆)
evlsgsummul.b 𝐵 = (Base‘𝑊)
evlsgsummul.i (𝜑𝐼𝑉)
evlsgsummul.s (𝜑𝑆 ∈ CRing)
evlsgsummul.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsgsummul.y ((𝜑𝑥𝑁) → 𝑌𝐵)
evlsgsummul.n (𝜑𝑁 ⊆ ℕ0)
evlsgsummul.f (𝜑 → (𝑥𝑁𝑌) finSupp 1 )
Assertion
Ref Expression
evlsgsummul (𝜑 → (𝑄‘(𝐺 Σg (𝑥𝑁𝑌))) = (𝐻 Σg (𝑥𝑁 ↦ (𝑄𝑌))))
Distinct variable groups:   𝑥,𝐵   𝑥,𝑁   𝑥,𝑄   𝜑,𝑥
Allowed substitution hints:   𝑃(𝑥)   𝑅(𝑥)   𝑆(𝑥)   𝑈(𝑥)   1 (𝑥)   𝐺(𝑥)   𝐻(𝑥)   𝐼(𝑥)   𝐾(𝑥)   𝑉(𝑥)   𝑊(𝑥)   𝑌(𝑥)

Proof of Theorem evlsgsummul
StepHypRef Expression
1 evlsgsummul.g . . . 4 𝐺 = (mulGrp‘𝑊)
2 evlsgsummul.b . . . 4 𝐵 = (Base‘𝑊)
31, 2mgpbas 20090 . . 3 𝐵 = (Base‘𝐺)
4 evlsgsummul.1 . . . 4 1 = (1r𝑊)
51, 4ringidval 20128 . . 3 1 = (0g𝐺)
6 evlsgsummul.i . . . . 5 (𝜑𝐼𝑉)
7 evlsgsummul.s . . . . . 6 (𝜑𝑆 ∈ CRing)
8 evlsgsummul.r . . . . . 6 (𝜑𝑅 ∈ (SubRing‘𝑆))
9 evlsgsummul.u . . . . . . 7 𝑈 = (𝑆s 𝑅)
109subrgcrng 20520 . . . . . 6 ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing)
117, 8, 10syl2anc 584 . . . . 5 (𝜑𝑈 ∈ CRing)
12 evlsgsummul.w . . . . . 6 𝑊 = (𝐼 mPoly 𝑈)
1312mplcrng 21966 . . . . 5 ((𝐼𝑉𝑈 ∈ CRing) → 𝑊 ∈ CRing)
146, 11, 13syl2anc 584 . . . 4 (𝜑𝑊 ∈ CRing)
151crngmgp 20186 . . . 4 (𝑊 ∈ CRing → 𝐺 ∈ CMnd)
1614, 15syl 17 . . 3 (𝜑𝐺 ∈ CMnd)
17 crngring 20190 . . . . . 6 (𝑆 ∈ CRing → 𝑆 ∈ Ring)
187, 17syl 17 . . . . 5 (𝜑𝑆 ∈ Ring)
19 ovex 7432 . . . . 5 (𝐾m 𝐼) ∈ V
2018, 19jctir 520 . . . 4 (𝜑 → (𝑆 ∈ Ring ∧ (𝐾m 𝐼) ∈ V))
21 evlsgsummul.p . . . . 5 𝑃 = (𝑆s (𝐾m 𝐼))
2221pwsring 20269 . . . 4 ((𝑆 ∈ Ring ∧ (𝐾m 𝐼) ∈ V) → 𝑃 ∈ Ring)
23 evlsgsummul.h . . . . 5 𝐻 = (mulGrp‘𝑃)
2423ringmgp 20184 . . . 4 (𝑃 ∈ Ring → 𝐻 ∈ Mnd)
2520, 22, 243syl 18 . . 3 (𝜑𝐻 ∈ Mnd)
26 nn0ex 12499 . . . . 5 0 ∈ V
2726a1i 11 . . . 4 (𝜑 → ℕ0 ∈ V)
28 evlsgsummul.n . . . 4 (𝜑𝑁 ⊆ ℕ0)
2927, 28ssexd 5291 . . 3 (𝜑𝑁 ∈ V)
30 evlsgsummul.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
31 evlsgsummul.k . . . . . 6 𝐾 = (Base‘𝑆)
3230, 12, 9, 21, 31evlsrhm 22031 . . . . 5 ((𝐼𝑉𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑃))
336, 7, 8, 32syl3anc 1372 . . . 4 (𝜑𝑄 ∈ (𝑊 RingHom 𝑃))
341, 23rhmmhm 20424 . . . 4 (𝑄 ∈ (𝑊 RingHom 𝑃) → 𝑄 ∈ (𝐺 MndHom 𝐻))
3533, 34syl 17 . . 3 (𝜑𝑄 ∈ (𝐺 MndHom 𝐻))
36 evlsgsummul.y . . 3 ((𝜑𝑥𝑁) → 𝑌𝐵)
37 evlsgsummul.f . . 3 (𝜑 → (𝑥𝑁𝑌) finSupp 1 )
383, 5, 16, 25, 29, 35, 36, 37gsummptmhm 19906 . 2 (𝜑 → (𝐻 Σg (𝑥𝑁 ↦ (𝑄𝑌))) = (𝑄‘(𝐺 Σg (𝑥𝑁𝑌))))
3938eqcomd 2740 1 (𝜑 → (𝑄‘(𝐺 Σg (𝑥𝑁𝑌))) = (𝐻 Σg (𝑥𝑁 ↦ (𝑄𝑌))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2107  Vcvv 3457  wss 3924   class class class wbr 5116  cmpt 5198  cfv 6527  (class class class)co 7399  m cmap 8834   finSupp cfsupp 9367  0cn0 12493  Basecbs 17213  s cress 17236   Σg cgsu 17439  s cpws 17445  Mndcmnd 18697   MndHom cmhm 18744  CMndccmn 19746  mulGrpcmgp 20085  1rcur 20126  Ringcrg 20178  CRingccrg 20179   RingHom crh 20414  SubRingcsubrg 20514   mPoly cmpl 21851   evalSub ces 22015
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-rep 5246  ax-sep 5263  ax-nul 5273  ax-pow 5332  ax-pr 5399  ax-un 7723  ax-cnex 11177  ax-resscn 11178  ax-1cn 11179  ax-icn 11180  ax-addcl 11181  ax-addrcl 11182  ax-mulcl 11183  ax-mulrcl 11184  ax-mulcom 11185  ax-addass 11186  ax-mulass 11187  ax-distr 11188  ax-i2m1 11189  ax-1ne0 11190  ax-1rid 11191  ax-rnegex 11192  ax-rrecex 11193  ax-cnre 11194  ax-pre-lttri 11195  ax-pre-lttrn 11196  ax-pre-ltadd 11197  ax-pre-mulgt0 11198
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-nel 3036  df-ral 3051  df-rex 3060  df-rmo 3357  df-reu 3358  df-rab 3414  df-v 3459  df-sbc 3764  df-csb 3873  df-dif 3927  df-un 3929  df-in 3931  df-ss 3941  df-pss 3944  df-nul 4307  df-if 4499  df-pw 4575  df-sn 4600  df-pr 4602  df-tp 4604  df-op 4606  df-uni 4881  df-int 4920  df-iun 4966  df-iin 4967  df-br 5117  df-opab 5179  df-mpt 5199  df-tr 5227  df-id 5545  df-eprel 5550  df-po 5558  df-so 5559  df-fr 5603  df-se 5604  df-we 5605  df-xp 5657  df-rel 5658  df-cnv 5659  df-co 5660  df-dm 5661  df-rn 5662  df-res 5663  df-ima 5664  df-pred 6287  df-ord 6352  df-on 6353  df-lim 6354  df-suc 6355  df-iota 6480  df-fun 6529  df-fn 6530  df-f 6531  df-f1 6532  df-fo 6533  df-f1o 6534  df-fv 6535  df-isom 6536  df-riota 7356  df-ov 7402  df-oprab 7403  df-mpo 7404  df-of 7665  df-ofr 7666  df-om 7856  df-1st 7982  df-2nd 7983  df-supp 8154  df-frecs 8274  df-wrecs 8305  df-recs 8379  df-rdg 8418  df-1o 8474  df-2o 8475  df-er 8713  df-map 8836  df-pm 8837  df-ixp 8906  df-en 8954  df-dom 8955  df-sdom 8956  df-fin 8957  df-fsupp 9368  df-sup 9448  df-oi 9516  df-card 9945  df-pnf 11263  df-mnf 11264  df-xr 11265  df-ltxr 11266  df-le 11267  df-sub 11460  df-neg 11461  df-nn 12233  df-2 12295  df-3 12296  df-4 12297  df-5 12298  df-6 12299  df-7 12300  df-8 12301  df-9 12302  df-n0 12494  df-z 12581  df-dec 12701  df-uz 12845  df-fz 13514  df-fzo 13661  df-seq 14009  df-hash 14337  df-struct 17151  df-sets 17168  df-slot 17186  df-ndx 17198  df-base 17214  df-ress 17237  df-plusg 17269  df-mulr 17270  df-sca 17272  df-vsca 17273  df-ip 17274  df-tset 17275  df-ple 17276  df-ds 17278  df-hom 17280  df-cco 17281  df-0g 17440  df-gsum 17441  df-prds 17446  df-pws 17448  df-mre 17583  df-mrc 17584  df-acs 17586  df-mgm 18603  df-sgrp 18682  df-mnd 18698  df-mhm 18746  df-submnd 18747  df-grp 18904  df-minusg 18905  df-sbg 18906  df-mulg 19036  df-subg 19091  df-ghm 19181  df-cntz 19285  df-cmn 19748  df-abl 19749  df-mgp 20086  df-rng 20098  df-ur 20127  df-srg 20132  df-ring 20180  df-cring 20181  df-rhm 20417  df-subrng 20491  df-subrg 20515  df-lmod 20804  df-lss 20874  df-lsp 20914  df-assa 21798  df-asp 21799  df-ascl 21800  df-psr 21854  df-mvr 21855  df-mpl 21856  df-evls 22017
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator