MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  smadiadetlem4 Structured version   Visualization version   GIF version

Theorem smadiadetlem4 21538
Description: Lemma 4 for smadiadet 21539. (Contributed by AV, 31-Jan-2019.)
Hypotheses
Ref Expression
marep01ma.a 𝐴 = (𝑁 Mat 𝑅)
marep01ma.b 𝐵 = (Base‘𝐴)
marep01ma.r 𝑅 ∈ CRing
marep01ma.0 0 = (0g𝑅)
marep01ma.1 1 = (1r𝑅)
smadiadetlem.p 𝑃 = (Base‘(SymGrp‘𝑁))
smadiadetlem.g 𝐺 = (mulGrp‘𝑅)
madetminlem.y 𝑌 = (ℤRHom‘𝑅)
madetminlem.s 𝑆 = (pmSgn‘𝑁)
madetminlem.t · = (.r𝑅)
smadiadetlem.w 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
smadiadetlem.z 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
Assertion
Ref Expression
smadiadetlem4 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝑅 Σg (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
Distinct variable groups:   𝑖,𝑗,𝑛,𝐵   𝑖,𝑞,𝐾,𝑗,𝑛   𝑖,𝑀,𝑗,𝑛   𝑖,𝑁,𝑗,𝑛   𝑃,𝑖,𝑗,𝑛,𝑞   𝑅,𝑖,𝑗,𝑛   1 ,𝑖,𝑗,𝑛   0 ,𝑖,𝑗,𝑛   𝑛,𝐺,𝑝   𝐵,𝑝   𝐾,𝑝   𝑀,𝑝   𝑁,𝑝   𝑃,𝑝   𝑅,𝑝,𝑖,𝑗   𝑞,𝑝   𝑛,𝑊,𝑝   𝐺,𝑝   𝑌,𝑝   𝑍,𝑝   𝑖,𝐺,𝑗
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑛,𝑞,𝑝)   𝐵(𝑞)   𝑅(𝑞)   𝑆(𝑖,𝑗,𝑛,𝑞,𝑝)   · (𝑖,𝑗,𝑛,𝑞,𝑝)   1 (𝑞,𝑝)   𝐺(𝑞)   𝑀(𝑞)   𝑁(𝑞)   𝑊(𝑖,𝑗,𝑞)   𝑌(𝑖,𝑗,𝑛,𝑞)   0 (𝑞,𝑝)   𝑍(𝑖,𝑗,𝑛,𝑞)

Proof of Theorem smadiadetlem4
StepHypRef Expression
1 marep01ma.r . . . . . . . . 9 𝑅 ∈ CRing
2 smadiadetlem.g . . . . . . . . . 10 𝐺 = (mulGrp‘𝑅)
32crngmgp 19542 . . . . . . . . 9 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
41, 3mp1i 13 . . . . . . . 8 ((𝑀𝐵𝐾𝑁) → 𝐺 ∈ CMnd)
5 marep01ma.a . . . . . . . . . . 11 𝐴 = (𝑁 Mat 𝑅)
6 marep01ma.b . . . . . . . . . . 11 𝐵 = (Base‘𝐴)
75, 6matrcl 21281 . . . . . . . . . 10 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
87simpld 498 . . . . . . . . 9 (𝑀𝐵𝑁 ∈ Fin)
98adantr 484 . . . . . . . 8 ((𝑀𝐵𝐾𝑁) → 𝑁 ∈ Fin)
104, 9jca 515 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → (𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin))
1110adantr 484 . . . . . 6 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin))
12 simprl 771 . . . . . . . . . . 11 (((𝑀𝐵𝐾𝑁) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
13 simprr 773 . . . . . . . . . . 11 (((𝑀𝐵𝐾𝑁) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
146eleq2i 2825 . . . . . . . . . . . . . 14 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
1514biimpi 219 . . . . . . . . . . . . 13 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
1615adantr 484 . . . . . . . . . . . 12 ((𝑀𝐵𝐾𝑁) → 𝑀 ∈ (Base‘𝐴))
1716adantr 484 . . . . . . . . . . 11 (((𝑀𝐵𝐾𝑁) ∧ (𝑖𝑁𝑗𝑁)) → 𝑀 ∈ (Base‘𝐴))
18 eqid 2734 . . . . . . . . . . . 12 (Base‘𝑅) = (Base‘𝑅)
195, 18matecl 21294 . . . . . . . . . . 11 ((𝑖𝑁𝑗𝑁𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
2012, 13, 17, 19syl3anc 1373 . . . . . . . . . 10 (((𝑀𝐵𝐾𝑁) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅))
212, 18mgpbas 19482 . . . . . . . . . 10 (Base‘𝑅) = (Base‘𝐺)
2220, 21eleqtrdi 2844 . . . . . . . . 9 (((𝑀𝐵𝐾𝑁) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑀𝑗) ∈ (Base‘𝐺))
2322ralrimivva 3105 . . . . . . . 8 ((𝑀𝐵𝐾𝑁) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ (Base‘𝐺))
2423adantr 484 . . . . . . 7 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ (Base‘𝐺))
25 crngring 19546 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
26 marep01ma.0 . . . . . . . . . 10 0 = (0g𝑅)
2718, 26ring0cl 19559 . . . . . . . . 9 (𝑅 ∈ Ring → 0 ∈ (Base‘𝑅))
281, 25, 27mp2b 10 . . . . . . . 8 0 ∈ (Base‘𝑅)
2928, 21eleqtri 2832 . . . . . . 7 0 ∈ (Base‘𝐺)
3024, 29jctir 524 . . . . . 6 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)))
31 simpr 488 . . . . . . 7 ((𝑀𝐵𝐾𝑁) → 𝐾𝑁)
3231adantr 484 . . . . . 6 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → 𝐾𝑁)
33 simpr 488 . . . . . 6 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾})
34 smadiadetlem.p . . . . . . 7 𝑃 = (Base‘(SymGrp‘𝑁))
35 eqid 2734 . . . . . . 7 {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} = {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}
36 marep01ma.1 . . . . . . . 8 1 = (1r𝑅)
372, 36ringidval 19490 . . . . . . 7 1 = (0g𝐺)
38 eqid 2734 . . . . . . 7 (Base‘𝐺) = (Base‘𝐺)
3934, 35, 37, 38gsummatr01 21528 . . . . . 6 (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧ (∀𝑖𝑁𝑗𝑁 (𝑖𝑀𝑗) ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) ∧ (𝐾𝑁𝐾𝑁𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾})) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))
4011, 30, 32, 32, 33, 39syl113anc 1384 . . . . 5 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))
4140oveq2d 7218 . . . 4 (((𝑀𝐵𝐾𝑁) ∧ 𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾}) → (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛))))) = (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))
4241mpteq2dva 5139 . . 3 ((𝑀𝐵𝐾𝑁) → (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛)))))) = (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛)))))))
4342oveq2d 7218 . 2 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝑅 Σg (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
44 madetminlem.y . . 3 𝑌 = (ℤRHom‘𝑅)
45 madetminlem.s . . 3 𝑆 = (pmSgn‘𝑁)
46 madetminlem.t . . 3 · = (.r𝑅)
47 smadiadetlem.w . . 3 𝑊 = (Base‘(SymGrp‘(𝑁 ∖ {𝐾})))
48 smadiadetlem.z . . 3 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾}))
495, 6, 1, 26, 36, 34, 2, 44, 45, 46, 47, 48smadiadetlem3 21537 . 2 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))) = (𝑅 Σg (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
5043, 49eqtrd 2774 1 ((𝑀𝐵𝐾𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞𝑃 ∣ (𝑞𝐾) = 𝐾} ↦ (((𝑌𝑆)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛𝑁 ↦ (𝑛(𝑖𝑁, 𝑗𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝𝑛))))))) = (𝑅 Σg (𝑝𝑊 ↦ (((𝑌𝑍)‘𝑝)(.r𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝𝑛))))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2110  wral 3054  {crab 3058  Vcvv 3401  cdif 3854  ifcif 4429  {csn 4531  cmpt 5124  ccom 5544  cfv 6369  (class class class)co 7202  cmpo 7204  Fincfn 8615  Basecbs 16684  .rcmulr 16768  0gc0g 16916   Σg cgsu 16917  SymGrpcsymg 18731  pmSgncpsgn 18853  CMndccmn 19142  mulGrpcmgp 19476  1rcur 19488  Ringcrg 19534  CRingccrg 19535  ℤRHomczrh 20438   Mat cmat 21276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512  ax-cnex 10768  ax-resscn 10769  ax-1cn 10770  ax-icn 10771  ax-addcl 10772  ax-addrcl 10773  ax-mulcl 10774  ax-mulrcl 10775  ax-mulcom 10776  ax-addass 10777  ax-mulass 10778  ax-distr 10779  ax-i2m1 10780  ax-1ne0 10781  ax-1rid 10782  ax-rnegex 10783  ax-rrecex 10784  ax-cnre 10785  ax-pre-lttri 10786  ax-pre-lttrn 10787  ax-pre-ltadd 10788  ax-pre-mulgt0 10789  ax-addf 10791  ax-mulf 10792
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-xor 1508  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-nel 3040  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-ot 4540  df-uni 4810  df-int 4850  df-iun 4896  df-iin 4897  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-of 7458  df-om 7634  df-1st 7750  df-2nd 7751  df-supp 7893  df-tpos 7957  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-1o 8191  df-2o 8192  df-er 8380  df-map 8499  df-pm 8500  df-ixp 8568  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-fsupp 8975  df-sup 9047  df-oi 9115  df-card 9538  df-pnf 10852  df-mnf 10853  df-xr 10854  df-ltxr 10855  df-le 10856  df-sub 11047  df-neg 11048  df-div 11473  df-nn 11814  df-2 11876  df-3 11877  df-4 11878  df-5 11879  df-6 11880  df-7 11881  df-8 11882  df-9 11883  df-n0 12074  df-xnn0 12146  df-z 12160  df-dec 12277  df-uz 12422  df-rp 12570  df-fz 13079  df-fzo 13222  df-seq 13558  df-exp 13619  df-hash 13880  df-word 14053  df-lsw 14101  df-concat 14109  df-s1 14136  df-substr 14189  df-pfx 14219  df-splice 14298  df-reverse 14307  df-s2 14396  df-struct 16686  df-ndx 16687  df-slot 16688  df-base 16690  df-sets 16691  df-ress 16692  df-plusg 16780  df-mulr 16781  df-starv 16782  df-sca 16783  df-vsca 16784  df-ip 16785  df-tset 16786  df-ple 16787  df-ds 16789  df-unif 16790  df-hom 16791  df-cco 16792  df-0g 16918  df-gsum 16919  df-prds 16924  df-pws 16926  df-mre 17061  df-mrc 17062  df-acs 17064  df-mgm 18086  df-sgrp 18135  df-mnd 18146  df-mhm 18190  df-submnd 18191  df-efmnd 18268  df-grp 18340  df-minusg 18341  df-mulg 18461  df-subg 18512  df-ghm 18592  df-gim 18635  df-cntz 18683  df-oppg 18710  df-symg 18732  df-pmtr 18806  df-psgn 18855  df-cmn 19144  df-abl 19145  df-mgp 19477  df-ur 19489  df-ring 19536  df-cring 19537  df-rnghom 19707  df-subrg 19770  df-sra 20181  df-rgmod 20182  df-cnfld 20336  df-zring 20408  df-zrh 20442  df-dsmm 20666  df-frlm 20681  df-mat 21277
This theorem is referenced by:  smadiadet  21539
  Copyright terms: Public domain W3C validator