Proof of Theorem smadiadetlem4
Step | Hyp | Ref
| Expression |
1 | | marep01ma.r |
. . . . . . . . 9
⊢ 𝑅 ∈ CRing |
2 | | smadiadetlem.g |
. . . . . . . . . 10
⊢ 𝐺 = (mulGrp‘𝑅) |
3 | 2 | crngmgp 19791 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
4 | 1, 3 | mp1i 13 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → 𝐺 ∈ CMnd) |
5 | | marep01ma.a |
. . . . . . . . . . 11
⊢ 𝐴 = (𝑁 Mat 𝑅) |
6 | | marep01ma.b |
. . . . . . . . . . 11
⊢ 𝐵 = (Base‘𝐴) |
7 | 5, 6 | matrcl 21559 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
8 | 7 | simpld 495 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
9 | 8 | adantr 481 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → 𝑁 ∈ Fin) |
10 | 4, 9 | jca 512 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin)) |
11 | 10 | adantr 481 |
. . . . . 6
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin)) |
12 | | simprl 768 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
13 | | simprr 770 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
14 | 6 | eleq2i 2830 |
. . . . . . . . . . . . . 14
⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
15 | 14 | biimpi 215 |
. . . . . . . . . . . . 13
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
16 | 15 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
17 | 16 | adantr 481 |
. . . . . . . . . . 11
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑀 ∈ (Base‘𝐴)) |
18 | | eqid 2738 |
. . . . . . . . . . . 12
⊢
(Base‘𝑅) =
(Base‘𝑅) |
19 | 5, 18 | matecl 21574 |
. . . . . . . . . . 11
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
20 | 12, 13, 17, 19 | syl3anc 1370 |
. . . . . . . . . 10
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑀𝑗) ∈ (Base‘𝑅)) |
21 | 2, 18 | mgpbas 19726 |
. . . . . . . . . 10
⊢
(Base‘𝑅) =
(Base‘𝐺) |
22 | 20, 21 | eleqtrdi 2849 |
. . . . . . . . 9
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖𝑀𝑗) ∈ (Base‘𝐺)) |
23 | 22 | ralrimivva 3123 |
. . . . . . . 8
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ (Base‘𝐺)) |
24 | 23 | adantr 481 |
. . . . . . 7
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ (Base‘𝐺)) |
25 | | crngring 19795 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
26 | | marep01ma.0 |
. . . . . . . . . 10
⊢ 0 =
(0g‘𝑅) |
27 | 18, 26 | ring0cl 19808 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 0 ∈
(Base‘𝑅)) |
28 | 1, 25, 27 | mp2b 10 |
. . . . . . . 8
⊢ 0 ∈
(Base‘𝑅) |
29 | 28, 21 | eleqtri 2837 |
. . . . . . 7
⊢ 0 ∈
(Base‘𝐺) |
30 | 24, 29 | jctir 521 |
. . . . . 6
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺))) |
31 | | simpr 485 |
. . . . . . 7
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → 𝐾 ∈ 𝑁) |
32 | 31 | adantr 481 |
. . . . . 6
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → 𝐾 ∈ 𝑁) |
33 | | simpr 485 |
. . . . . 6
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) |
34 | | smadiadetlem.p |
. . . . . . 7
⊢ 𝑃 =
(Base‘(SymGrp‘𝑁)) |
35 | | eqid 2738 |
. . . . . . 7
⊢ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} = {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} |
36 | | marep01ma.1 |
. . . . . . . 8
⊢ 1 =
(1r‘𝑅) |
37 | 2, 36 | ringidval 19739 |
. . . . . . 7
⊢ 1 =
(0g‘𝐺) |
38 | | eqid 2738 |
. . . . . . 7
⊢
(Base‘𝐺) =
(Base‘𝐺) |
39 | 34, 35, 37, 38 | gsummatr01 21808 |
. . . . . 6
⊢ (((𝐺 ∈ CMnd ∧ 𝑁 ∈ Fin) ∧
(∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖𝑀𝑗) ∈ (Base‘𝐺) ∧ 0 ∈ (Base‘𝐺)) ∧ (𝐾 ∈ 𝑁 ∧ 𝐾 ∈ 𝑁 ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾})) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))) |
40 | 11, 30, 32, 32, 33, 39 | syl113anc 1381 |
. . . . 5
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))) = (𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))) |
41 | 40 | oveq2d 7291 |
. . . 4
⊢ (((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) ∧ 𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾}) → (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))) = (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))) |
42 | 41 | mpteq2dva 5174 |
. . 3
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛)))))) = (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) |
43 | 42 | oveq2d 7291 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |
44 | | madetminlem.y |
. . 3
⊢ 𝑌 = (ℤRHom‘𝑅) |
45 | | madetminlem.s |
. . 3
⊢ 𝑆 = (pmSgn‘𝑁) |
46 | | madetminlem.t |
. . 3
⊢ · =
(.r‘𝑅) |
47 | | smadiadetlem.w |
. . 3
⊢ 𝑊 =
(Base‘(SymGrp‘(𝑁 ∖ {𝐾}))) |
48 | | smadiadetlem.z |
. . 3
⊢ 𝑍 = (pmSgn‘(𝑁 ∖ {𝐾})) |
49 | 5, 6, 1, 26, 36, 34, 2, 44, 45, 46, 47, 48 | smadiadetlem3 21817 |
. 2
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |
50 | 43, 49 | eqtrd 2778 |
1
⊢ ((𝑀 ∈ 𝐵 ∧ 𝐾 ∈ 𝑁) → (𝑅 Σg (𝑝 ∈ {𝑞 ∈ 𝑃 ∣ (𝑞‘𝐾) = 𝐾} ↦ (((𝑌 ∘ 𝑆)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛(𝑖 ∈ 𝑁, 𝑗 ∈ 𝑁 ↦ if(𝑖 = 𝐾, if(𝑗 = 𝐾, 1 , 0 ), (𝑖𝑀𝑗)))(𝑝‘𝑛))))))) = (𝑅 Σg (𝑝 ∈ 𝑊 ↦ (((𝑌 ∘ 𝑍)‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑛(𝑖 ∈ (𝑁 ∖ {𝐾}), 𝑗 ∈ (𝑁 ∖ {𝐾}) ↦ (𝑖𝑀𝑗))(𝑝‘𝑛)))))))) |