![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgpsumz | Structured version Visualization version GIF version |
Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the zero of the ring, the group sum itself is zero. (Contributed by AV, 29-Dec-2018.) |
Ref | Expression |
---|---|
mgpsumunsn.m | โข ๐ = (mulGrpโ๐ ) |
mgpsumunsn.t | โข ยท = (.rโ๐ ) |
mgpsumunsn.r | โข (๐ โ ๐ โ CRing) |
mgpsumunsn.n | โข (๐ โ ๐ โ Fin) |
mgpsumunsn.i | โข (๐ โ ๐ผ โ ๐) |
mgpsumunsn.a | โข ((๐ โง ๐ โ ๐) โ ๐ด โ (Baseโ๐ )) |
mgpsumz.z | โข 0 = (0gโ๐ ) |
mgpsumz.0 | โข (๐ = ๐ผ โ ๐ด = 0 ) |
Ref | Expression |
---|---|
mgpsumz | โข (๐ โ (๐ ฮฃg (๐ โ ๐ โฆ ๐ด)) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpsumunsn.m | . . 3 โข ๐ = (mulGrpโ๐ ) | |
2 | mgpsumunsn.t | . . 3 โข ยท = (.rโ๐ ) | |
3 | mgpsumunsn.r | . . 3 โข (๐ โ ๐ โ CRing) | |
4 | mgpsumunsn.n | . . 3 โข (๐ โ ๐ โ Fin) | |
5 | mgpsumunsn.i | . . 3 โข (๐ โ ๐ผ โ ๐) | |
6 | mgpsumunsn.a | . . 3 โข ((๐ โง ๐ โ ๐) โ ๐ด โ (Baseโ๐ )) | |
7 | crngring 20179 | . . . . . 6 โข (๐ โ CRing โ ๐ โ Ring) | |
8 | ringmnd 20177 | . . . . . 6 โข (๐ โ Ring โ ๐ โ Mnd) | |
9 | 7, 8 | syl 17 | . . . . 5 โข (๐ โ CRing โ ๐ โ Mnd) |
10 | 3, 9 | syl 17 | . . . 4 โข (๐ โ ๐ โ Mnd) |
11 | eqid 2728 | . . . . 5 โข (Baseโ๐ ) = (Baseโ๐ ) | |
12 | mgpsumz.z | . . . . 5 โข 0 = (0gโ๐ ) | |
13 | 11, 12 | mndidcl 18703 | . . . 4 โข (๐ โ Mnd โ 0 โ (Baseโ๐ )) |
14 | 10, 13 | syl 17 | . . 3 โข (๐ โ 0 โ (Baseโ๐ )) |
15 | mgpsumz.0 | . . 3 โข (๐ = ๐ผ โ ๐ด = 0 ) | |
16 | 1, 2, 3, 4, 5, 6, 14, 15 | mgpsumunsn 47416 | . 2 โข (๐ โ (๐ ฮฃg (๐ โ ๐ โฆ ๐ด)) = ((๐ ฮฃg (๐ โ (๐ โ {๐ผ}) โฆ ๐ด)) ยท 0 )) |
17 | 3, 7 | syl 17 | . . 3 โข (๐ โ ๐ โ Ring) |
18 | 1, 11 | mgpbas 20074 | . . . 4 โข (Baseโ๐ ) = (Baseโ๐) |
19 | 1 | crngmgp 20175 | . . . . 5 โข (๐ โ CRing โ ๐ โ CMnd) |
20 | 3, 19 | syl 17 | . . . 4 โข (๐ โ ๐ โ CMnd) |
21 | diffi 9198 | . . . . 5 โข (๐ โ Fin โ (๐ โ {๐ผ}) โ Fin) | |
22 | 4, 21 | syl 17 | . . . 4 โข (๐ โ (๐ โ {๐ผ}) โ Fin) |
23 | eldifi 4123 | . . . . . 6 โข (๐ โ (๐ โ {๐ผ}) โ ๐ โ ๐) | |
24 | 23, 6 | sylan2 592 | . . . . 5 โข ((๐ โง ๐ โ (๐ โ {๐ผ})) โ ๐ด โ (Baseโ๐ )) |
25 | 24 | ralrimiva 3142 | . . . 4 โข (๐ โ โ๐ โ (๐ โ {๐ผ})๐ด โ (Baseโ๐ )) |
26 | 18, 20, 22, 25 | gsummptcl 19916 | . . 3 โข (๐ โ (๐ ฮฃg (๐ โ (๐ โ {๐ผ}) โฆ ๐ด)) โ (Baseโ๐ )) |
27 | 11, 2, 12 | ringrz 20224 | . . 3 โข ((๐ โ Ring โง (๐ ฮฃg (๐ โ (๐ โ {๐ผ}) โฆ ๐ด)) โ (Baseโ๐ )) โ ((๐ ฮฃg (๐ โ (๐ โ {๐ผ}) โฆ ๐ด)) ยท 0 ) = 0 ) |
28 | 17, 26, 27 | syl2anc 583 | . 2 โข (๐ โ ((๐ ฮฃg (๐ โ (๐ โ {๐ผ}) โฆ ๐ด)) ยท 0 ) = 0 ) |
29 | 16, 28 | eqtrd 2768 | 1 โข (๐ โ (๐ ฮฃg (๐ โ ๐ โฆ ๐ด)) = 0 ) |
Colors of variables: wff setvar class |
Syntax hints: โ wi 4 โง wa 395 = wceq 1534 โ wcel 2099 โ cdif 3942 {csn 4625 โฆ cmpt 5226 โcfv 6543 (class class class)co 7415 Fincfn 8958 Basecbs 17174 .rcmulr 17228 0gc0g 17415 ฮฃg cgsu 17416 Mndcmnd 18688 CMndccmn 19729 mulGrpcmgp 20068 Ringcrg 20167 CRingccrg 20168 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-iin 4995 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-se 5629 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-isom 6552 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-of 7680 df-om 7866 df-1st 7988 df-2nd 7989 df-supp 8161 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-fsupp 9381 df-oi 9528 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-fzo 13655 df-seq 13994 df-hash 14317 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-0g 17417 df-gsum 17418 df-mre 17560 df-mrc 17561 df-acs 17563 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-grp 18887 df-minusg 18888 df-mulg 19018 df-cntz 19262 df-cmn 19731 df-abl 19732 df-mgp 20069 df-rng 20087 df-ur 20116 df-ring 20169 df-cring 20170 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |