| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgpsumz | Structured version Visualization version GIF version | ||
| Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the zero of the ring, the group sum itself is zero. (Contributed by AV, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| mgpsumunsn.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpsumunsn.t | ⊢ · = (.r‘𝑅) |
| mgpsumunsn.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| mgpsumunsn.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mgpsumunsn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
| mgpsumunsn.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
| mgpsumz.z | ⊢ 0 = (0g‘𝑅) |
| mgpsumz.0 | ⊢ (𝑘 = 𝐼 → 𝐴 = 0 ) |
| Ref | Expression |
|---|---|
| mgpsumz | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpsumunsn.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 2 | mgpsumunsn.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 3 | mgpsumunsn.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 4 | mgpsumunsn.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 5 | mgpsumunsn.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
| 6 | mgpsumunsn.a | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) | |
| 7 | crngring 20130 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 8 | ringmnd 20128 | . . . 4 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | |
| 9 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | mgpsumz.z | . . . . 5 ⊢ 0 = (0g‘𝑅) | |
| 11 | 9, 10 | mndidcl 18652 | . . . 4 ⊢ (𝑅 ∈ Mnd → 0 ∈ (Base‘𝑅)) |
| 12 | 3, 7, 8, 11 | 4syl 19 | . . 3 ⊢ (𝜑 → 0 ∈ (Base‘𝑅)) |
| 13 | mgpsumz.0 | . . 3 ⊢ (𝑘 = 𝐼 → 𝐴 = 0 ) | |
| 14 | 1, 2, 3, 4, 5, 6, 12, 13 | mgpsumunsn 48322 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 0 )) |
| 15 | 3, 7 | syl 17 | . . 3 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 16 | 1, 9 | mgpbas 20030 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑀) |
| 17 | 1 | crngmgp 20126 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
| 18 | 3, 17 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ CMnd) |
| 19 | diffi 9116 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin) | |
| 20 | 4, 19 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin) |
| 21 | eldifi 4090 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘 ∈ 𝑁) | |
| 22 | 21, 6 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅)) |
| 23 | 22 | ralrimiva 3125 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (𝑁 ∖ {𝐼})𝐴 ∈ (Base‘𝑅)) |
| 24 | 16, 18, 20, 23 | gsummptcl 19873 | . . 3 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
| 25 | 9, 2, 10 | ringrz 20179 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 0 ) = 0 ) |
| 26 | 15, 24, 25 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 0 ) = 0 ) |
| 27 | 14, 26 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = 0 ) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3908 {csn 4585 ↦ cmpt 5183 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 Basecbs 17155 .rcmulr 17197 0gc0g 17378 Σg cgsu 17379 Mndcmnd 18637 CMndccmn 19686 mulGrpcmgp 20025 Ringcrg 20118 CRingccrg 20119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-of 7633 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-nn 12163 df-2 12225 df-n0 12419 df-z 12506 df-uz 12770 df-fz 13445 df-fzo 13592 df-seq 13943 df-hash 14272 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-0g 17380 df-gsum 17381 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-submnd 18687 df-grp 18844 df-minusg 18845 df-mulg 18976 df-cntz 19225 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |