![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > madetsmelbas2 | Structured version Visualization version GIF version |
Description: A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
Ref | Expression |
---|---|
madetsmelbas.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
madetsmelbas.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
madetsmelbas.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
madetsmelbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
madetsmelbas.b | ⊢ 𝐵 = (Base‘𝐴) |
madetsmelbas.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
madetsmelbas2 | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛𝑀(𝑄‘𝑛))))) ∈ (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 20068 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | 1 | 3ad2ant1 1134 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → 𝑅 ∈ Ring) |
3 | madetsmelbas.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
4 | madetsmelbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
5 | 3, 4 | matrcl 21912 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
6 | 5 | simpld 496 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
7 | 6 | 3ad2ant2 1135 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → 𝑁 ∈ Fin) |
8 | simp3 1139 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → 𝑄 ∈ 𝑃) | |
9 | madetsmelbas.p | . . . 4 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
10 | madetsmelbas.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
11 | madetsmelbas.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
12 | 9, 10, 11 | zrhcopsgnelbas 21148 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) |
13 | 2, 7, 8, 12 | syl3anc 1372 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) |
14 | madetsmelbas.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
15 | eqid 2733 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
16 | 14, 15 | mgpbas 19993 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝐺) |
17 | 14 | crngmgp 20064 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
18 | 17 | 3ad2ant1 1134 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → 𝐺 ∈ CMnd) |
19 | simp2 1138 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → 𝑀 ∈ 𝐵) | |
20 | 3, 4, 9 | matepm2cl 21965 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 (𝑛𝑀(𝑄‘𝑛)) ∈ (Base‘𝑅)) |
21 | 2, 8, 19, 20 | syl3anc 1372 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → ∀𝑛 ∈ 𝑁 (𝑛𝑀(𝑄‘𝑛)) ∈ (Base‘𝑅)) |
22 | 16, 18, 7, 21 | gsummptcl 19835 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛𝑀(𝑄‘𝑛)))) ∈ (Base‘𝑅)) |
23 | eqid 2733 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
24 | 15, 23 | ringcl 20073 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅) ∧ (𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛𝑀(𝑄‘𝑛)))) ∈ (Base‘𝑅)) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛𝑀(𝑄‘𝑛))))) ∈ (Base‘𝑅)) |
25 | 2, 13, 22, 24 | syl3anc 1372 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ (𝑛𝑀(𝑄‘𝑛))))) ∈ (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ w3a 1088 = wceq 1542 ∈ wcel 2107 ∀wral 3062 Vcvv 3475 ↦ cmpt 5232 ∘ ccom 5681 ‘cfv 6544 (class class class)co 7409 Fincfn 8939 Basecbs 17144 .rcmulr 17198 Σg cgsu 17386 SymGrpcsymg 19234 pmSgncpsgn 19357 CMndccmn 19648 mulGrpcmgp 19987 Ringcrg 20056 CRingccrg 20057 ℤRHomczrh 21049 Mat cmat 21907 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 ax-addf 11189 ax-mulf 11190 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-xor 1511 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-rmo 3377 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-tp 4634 df-op 4636 df-ot 4638 df-uni 4910 df-int 4952 df-iun 5000 df-iin 5001 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-se 5633 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-isom 6553 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-supp 8147 df-tpos 8211 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-2o 8467 df-er 8703 df-map 8822 df-ixp 8892 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-fsupp 9362 df-sup 9437 df-oi 9505 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-div 11872 df-nn 12213 df-2 12275 df-3 12276 df-4 12277 df-5 12278 df-6 12279 df-7 12280 df-8 12281 df-9 12282 df-n0 12473 df-xnn0 12545 df-z 12559 df-dec 12678 df-uz 12823 df-rp 12975 df-fz 13485 df-fzo 13628 df-seq 13967 df-exp 14028 df-hash 14291 df-word 14465 df-lsw 14513 df-concat 14521 df-s1 14546 df-substr 14591 df-pfx 14621 df-splice 14700 df-reverse 14709 df-s2 14799 df-struct 17080 df-sets 17097 df-slot 17115 df-ndx 17127 df-base 17145 df-ress 17174 df-plusg 17210 df-mulr 17211 df-starv 17212 df-sca 17213 df-vsca 17214 df-ip 17215 df-tset 17216 df-ple 17217 df-ds 17219 df-unif 17220 df-hom 17221 df-cco 17222 df-0g 17387 df-gsum 17388 df-prds 17393 df-pws 17395 df-mre 17530 df-mrc 17531 df-acs 17533 df-mgm 18561 df-sgrp 18610 df-mnd 18626 df-mhm 18671 df-submnd 18672 df-efmnd 18750 df-grp 18822 df-minusg 18823 df-mulg 18951 df-subg 19003 df-ghm 19090 df-gim 19133 df-cntz 19181 df-oppg 19210 df-symg 19235 df-pmtr 19310 df-psgn 19359 df-cmn 19650 df-mgp 19988 df-ur 20005 df-ring 20058 df-cring 20059 df-rnghom 20251 df-subrg 20317 df-sra 20785 df-rgmod 20786 df-cnfld 20945 df-zring 21018 df-zrh 21053 df-dsmm 21287 df-frlm 21302 df-mat 21908 |
This theorem is referenced by: smadiadetlem1 22164 smadiadetlem3lem0 22167 smadiadet 22172 |
Copyright terms: Public domain | W3C validator |