Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > crngbinom | Structured version Visualization version GIF version |
Description: The binomial theorem for commutative rings (special case of csrgbinom 19780): (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). (Contributed by AV, 24-Aug-2019.) |
Ref | Expression |
---|---|
crngbinom.s | ⊢ 𝑆 = (Base‘𝑅) |
crngbinom.m | ⊢ × = (.r‘𝑅) |
crngbinom.t | ⊢ · = (.g‘𝑅) |
crngbinom.a | ⊢ + = (+g‘𝑅) |
crngbinom.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
crngbinom.e | ⊢ ↑ = (.g‘𝐺) |
Ref | Expression |
---|---|
crngbinom | ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | crngring 19793 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
2 | ringsrg 19826 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ SRing) |
4 | 3 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝑅 ∈ SRing) |
5 | crngbinom.g | . . . . 5 ⊢ 𝐺 = (mulGrp‘𝑅) | |
6 | 5 | crngmgp 19789 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
7 | 6 | adantr 481 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝐺 ∈ CMnd) |
8 | simpr 485 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
9 | 4, 7, 8 | 3jca 1127 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0)) |
10 | crngbinom.s | . . 3 ⊢ 𝑆 = (Base‘𝑅) | |
11 | crngbinom.m | . . 3 ⊢ × = (.r‘𝑅) | |
12 | crngbinom.t | . . 3 ⊢ · = (.g‘𝑅) | |
13 | crngbinom.a | . . 3 ⊢ + = (+g‘𝑅) | |
14 | crngbinom.e | . . 3 ⊢ ↑ = (.g‘𝐺) | |
15 | 10, 11, 12, 13, 5, 14 | csrgbinom 19780 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
16 | 9, 15 | sylan 580 | 1 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1539 ∈ wcel 2106 ↦ cmpt 5159 ‘cfv 6435 (class class class)co 7277 0cc0 10869 − cmin 11203 ℕ0cn0 12231 ...cfz 13237 Ccbc 14014 Basecbs 16910 +gcplusg 16960 .rcmulr 16961 Σg cgsu 17149 .gcmg 18698 CMndccmn 19384 mulGrpcmgp 19718 SRingcsrg 19739 Ringcrg 19781 CRingccrg 19782 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5211 ax-sep 5225 ax-nul 5232 ax-pow 5290 ax-pr 5354 ax-un 7588 ax-cnex 10925 ax-resscn 10926 ax-1cn 10927 ax-icn 10928 ax-addcl 10929 ax-addrcl 10930 ax-mulcl 10931 ax-mulrcl 10932 ax-mulcom 10933 ax-addass 10934 ax-mulass 10935 ax-distr 10936 ax-i2m1 10937 ax-1ne0 10938 ax-1rid 10939 ax-rnegex 10940 ax-rrecex 10941 ax-cnre 10942 ax-pre-lttri 10943 ax-pre-lttrn 10944 ax-pre-ltadd 10945 ax-pre-mulgt0 10946 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3433 df-sbc 3718 df-csb 3834 df-dif 3891 df-un 3893 df-in 3895 df-ss 3905 df-pss 3907 df-nul 4259 df-if 4462 df-pw 4537 df-sn 4564 df-pr 4566 df-op 4570 df-uni 4842 df-int 4882 df-iun 4928 df-iin 4929 df-br 5077 df-opab 5139 df-mpt 5160 df-tr 5194 df-id 5491 df-eprel 5497 df-po 5505 df-so 5506 df-fr 5546 df-se 5547 df-we 5548 df-xp 5597 df-rel 5598 df-cnv 5599 df-co 5600 df-dm 5601 df-rn 5602 df-res 5603 df-ima 5604 df-pred 6204 df-ord 6271 df-on 6272 df-lim 6273 df-suc 6274 df-iota 6393 df-fun 6437 df-fn 6438 df-f 6439 df-f1 6440 df-fo 6441 df-f1o 6442 df-fv 6443 df-isom 6444 df-riota 7234 df-ov 7280 df-oprab 7281 df-mpo 7282 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7976 df-frecs 8095 df-wrecs 8126 df-recs 8200 df-rdg 8239 df-1o 8295 df-er 8496 df-map 8615 df-en 8732 df-dom 8733 df-sdom 8734 df-fin 8735 df-fsupp 9127 df-oi 9267 df-card 9695 df-pnf 11009 df-mnf 11010 df-xr 11011 df-ltxr 11012 df-le 11013 df-sub 11205 df-neg 11206 df-div 11631 df-nn 11972 df-2 12034 df-n0 12232 df-z 12318 df-uz 12581 df-rp 12729 df-fz 13238 df-fzo 13381 df-seq 13720 df-fac 13986 df-bc 14015 df-hash 14043 df-sets 16863 df-slot 16881 df-ndx 16893 df-base 16911 df-ress 16940 df-plusg 16973 df-0g 17150 df-gsum 17151 df-mre 17293 df-mrc 17294 df-acs 17296 df-mgm 18324 df-sgrp 18373 df-mnd 18384 df-mhm 18428 df-submnd 18429 df-grp 18578 df-minusg 18579 df-mulg 18699 df-cntz 18921 df-cmn 19386 df-abl 19387 df-mgp 19719 df-ur 19736 df-srg 19740 df-ring 19783 df-cring 19784 |
This theorem is referenced by: lply1binom 21475 freshmansdream 31481 |
Copyright terms: Public domain | W3C validator |