| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > crngbinom | Structured version Visualization version GIF version | ||
| Description: The binomial theorem for commutative rings (special case of csrgbinom 20117): (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). (Contributed by AV, 24-Aug-2019.) |
| Ref | Expression |
|---|---|
| crngbinom.s | ⊢ 𝑆 = (Base‘𝑅) |
| crngbinom.m | ⊢ × = (.r‘𝑅) |
| crngbinom.t | ⊢ · = (.g‘𝑅) |
| crngbinom.a | ⊢ + = (+g‘𝑅) |
| crngbinom.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| crngbinom.e | ⊢ ↑ = (.g‘𝐺) |
| Ref | Expression |
|---|---|
| crngbinom | ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20130 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | ringsrg 20182 | . . . . 5 ⊢ (𝑅 ∈ Ring → 𝑅 ∈ SRing) | |
| 3 | 1, 2 | syl 17 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ SRing) |
| 4 | 3 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝑅 ∈ SRing) |
| 5 | crngbinom.g | . . . . 5 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 6 | 5 | crngmgp 20126 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
| 7 | 6 | adantr 480 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝐺 ∈ CMnd) |
| 8 | simpr 484 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0) | |
| 9 | 4, 7, 8 | 3jca 1128 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0)) |
| 10 | crngbinom.s | . . 3 ⊢ 𝑆 = (Base‘𝑅) | |
| 11 | crngbinom.m | . . 3 ⊢ × = (.r‘𝑅) | |
| 12 | crngbinom.t | . . 3 ⊢ · = (.g‘𝑅) | |
| 13 | crngbinom.a | . . 3 ⊢ + = (+g‘𝑅) | |
| 14 | crngbinom.e | . . 3 ⊢ ↑ = (.g‘𝐺) | |
| 15 | 10, 11, 12, 13, 5, 14 | csrgbinom 20117 | . 2 ⊢ (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| 16 | 9, 15 | sylan 580 | 1 ⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴 ∈ 𝑆 ∧ 𝐵 ∈ 𝑆)) → (𝑁 ↑ (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁 − 𝑘) ↑ 𝐴) × (𝑘 ↑ 𝐵)))))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 0cc0 11009 − cmin 11347 ℕ0cn0 12384 ...cfz 13410 Ccbc 14209 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Σg cgsu 17344 .gcmg 18946 CMndccmn 19659 mulGrpcmgp 20025 SRingcsrg 20071 Ringcrg 20118 CRingccrg 20119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-map 8755 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-div 11778 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-rp 12894 df-fz 13411 df-fzo 13558 df-seq 13909 df-fac 14181 df-bc 14210 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-mhm 18657 df-submnd 18658 df-grp 18815 df-minusg 18816 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-abl 19662 df-mgp 20026 df-rng 20038 df-ur 20067 df-srg 20072 df-ring 20120 df-cring 20121 |
| This theorem is referenced by: freshmansdream 21481 lply1binom 22195 |
| Copyright terms: Public domain | W3C validator |