MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngbinom Structured version   Visualization version   GIF version

Theorem crngbinom 20220
Description: The binomial theorem for commutative rings (special case of csrgbinom 20117): (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴𝑘) · (𝐵↑(𝑁𝑘)). (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
crngbinom.s 𝑆 = (Base‘𝑅)
crngbinom.m × = (.r𝑅)
crngbinom.t · = (.g𝑅)
crngbinom.a + = (+g𝑅)
crngbinom.g 𝐺 = (mulGrp‘𝑅)
crngbinom.e = (.g𝐺)
Assertion
Ref Expression
crngbinom (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   + ,𝑘
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem crngbinom
StepHypRef Expression
1 crngring 20130 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 ringsrg 20182 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
31, 2syl 17 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ SRing)
43adantr 480 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝑅 ∈ SRing)
5 crngbinom.g . . . . 5 𝐺 = (mulGrp‘𝑅)
65crngmgp 20126 . . . 4 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
76adantr 480 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝐺 ∈ CMnd)
8 simpr 484 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
94, 7, 83jca 1128 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0))
10 crngbinom.s . . 3 𝑆 = (Base‘𝑅)
11 crngbinom.m . . 3 × = (.r𝑅)
12 crngbinom.t . . 3 · = (.g𝑅)
13 crngbinom.a . . 3 + = (+g𝑅)
14 crngbinom.e . . 3 = (.g𝐺)
1510, 11, 12, 13, 5, 14csrgbinom 20117 . 2 (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
169, 15sylan 580 1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  cmpt 5173  cfv 6482  (class class class)co 7349  0cc0 11009  cmin 11347  0cn0 12384  ...cfz 13410  Ccbc 14209  Basecbs 17120  +gcplusg 17161  .rcmulr 17162   Σg cgsu 17344  .gcmg 18946  CMndccmn 19659  mulGrpcmgp 20025  SRingcsrg 20071  Ringcrg 20118  CRingccrg 20119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-int 4897  df-iun 4943  df-iin 4944  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-se 5573  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-isom 6491  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-of 7613  df-om 7800  df-1st 7924  df-2nd 7925  df-supp 8094  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-2o 8389  df-er 8625  df-map 8755  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-fsupp 9252  df-oi 9402  df-card 9835  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-n0 12385  df-z 12472  df-uz 12736  df-rp 12894  df-fz 13411  df-fzo 13558  df-seq 13909  df-fac 14181  df-bc 14210  df-hash 14238  df-sets 17075  df-slot 17093  df-ndx 17105  df-base 17121  df-ress 17142  df-plusg 17174  df-0g 17345  df-gsum 17346  df-mre 17488  df-mrc 17489  df-acs 17491  df-mgm 18514  df-sgrp 18593  df-mnd 18609  df-mhm 18657  df-submnd 18658  df-grp 18815  df-minusg 18816  df-mulg 18947  df-cntz 19196  df-cmn 19661  df-abl 19662  df-mgp 20026  df-rng 20038  df-ur 20067  df-srg 20072  df-ring 20120  df-cring 20121
This theorem is referenced by:  freshmansdream  21481  lply1binom  22195
  Copyright terms: Public domain W3C validator