Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  crngbinom Structured version   Visualization version   GIF version

Theorem crngbinom 19371
 Description: The binomial theorem for commutative rings (special case of csrgbinom 19293): (𝐴 + 𝐵)↑𝑁 is the sum from 𝑘 = 0 to 𝑁 of (𝑁C𝑘) · ((𝐴↑𝑘) · (𝐵↑(𝑁 − 𝑘)). (Contributed by AV, 24-Aug-2019.)
Hypotheses
Ref Expression
crngbinom.s 𝑆 = (Base‘𝑅)
crngbinom.m × = (.r𝑅)
crngbinom.t · = (.g𝑅)
crngbinom.a + = (+g𝑅)
crngbinom.g 𝐺 = (mulGrp‘𝑅)
crngbinom.e = (.g𝐺)
Assertion
Ref Expression
crngbinom (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
Distinct variable groups:   𝐴,𝑘   𝐵,𝑘   𝑘,𝑁   𝑅,𝑘   𝑆,𝑘   · ,𝑘   × ,𝑘   ,𝑘   + ,𝑘
Allowed substitution hint:   𝐺(𝑘)

Proof of Theorem crngbinom
StepHypRef Expression
1 crngring 19306 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
2 ringsrg 19339 . . . . 5 (𝑅 ∈ Ring → 𝑅 ∈ SRing)
31, 2syl 17 . . . 4 (𝑅 ∈ CRing → 𝑅 ∈ SRing)
43adantr 484 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝑅 ∈ SRing)
5 crngbinom.g . . . . 5 𝐺 = (mulGrp‘𝑅)
65crngmgp 19302 . . . 4 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
76adantr 484 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝐺 ∈ CMnd)
8 simpr 488 . . 3 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → 𝑁 ∈ ℕ0)
94, 7, 83jca 1125 . 2 ((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) → (𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0))
10 crngbinom.s . . 3 𝑆 = (Base‘𝑅)
11 crngbinom.m . . 3 × = (.r𝑅)
12 crngbinom.t . . 3 · = (.g𝑅)
13 crngbinom.a . . 3 + = (+g𝑅)
14 crngbinom.e . . 3 = (.g𝐺)
1510, 11, 12, 13, 5, 14csrgbinom 19293 . 2 (((𝑅 ∈ SRing ∧ 𝐺 ∈ CMnd ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
169, 15sylan 583 1 (((𝑅 ∈ CRing ∧ 𝑁 ∈ ℕ0) ∧ (𝐴𝑆𝐵𝑆)) → (𝑁 (𝐴 + 𝐵)) = (𝑅 Σg (𝑘 ∈ (0...𝑁) ↦ ((𝑁C𝑘) · (((𝑁𝑘) 𝐴) × (𝑘 𝐵))))))
 Colors of variables: wff setvar class Syntax hints:   → wi 4   ∧ wa 399   ∧ w3a 1084   = wceq 1538   ∈ wcel 2112   ↦ cmpt 5113  ‘cfv 6328  (class class class)co 7139  0cc0 10530   − cmin 10863  ℕ0cn0 11889  ...cfz 12889  Ccbc 13662  Basecbs 16479  +gcplusg 16561  .rcmulr 16562   Σg cgsu 16710  .gcmg 18220  CMndccmn 18902  mulGrpcmgp 19236  SRingcsrg 19252  Ringcrg 19294  CRingccrg 19295 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rmo 3117  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-iin 4887  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-se 5483  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-isom 6337  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-of 7393  df-om 7565  df-1st 7675  df-2nd 7676  df-supp 7818  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-map 8395  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-fsupp 8822  df-oi 8962  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-div 11291  df-nn 11630  df-2 11692  df-n0 11890  df-z 11974  df-uz 12236  df-rp 12382  df-fz 12890  df-fzo 13033  df-seq 13369  df-fac 13634  df-bc 13663  df-hash 13691  df-ndx 16482  df-slot 16483  df-base 16485  df-sets 16486  df-ress 16487  df-plusg 16574  df-0g 16711  df-gsum 16712  df-mre 16853  df-mrc 16854  df-acs 16856  df-mgm 17848  df-sgrp 17897  df-mnd 17908  df-mhm 17952  df-submnd 17953  df-grp 18102  df-minusg 18103  df-mulg 18221  df-cntz 18443  df-cmn 18904  df-abl 18905  df-mgp 19237  df-ur 19249  df-srg 19253  df-ring 19296  df-cring 19297 This theorem is referenced by:  lply1binom  20939  freshmansdream  30913
 Copyright terms: Public domain W3C validator