| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1gsummul | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 15-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1gsumadd.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1gsumadd.k | ⊢ 𝐾 = (Base‘𝑅) |
| evl1gsumadd.w | ⊢ 𝑊 = (Poly1‘𝑅) |
| evl1gsumadd.p | ⊢ 𝑃 = (𝑅 ↑s 𝐾) |
| evl1gsumadd.b | ⊢ 𝐵 = (Base‘𝑊) |
| evl1gsumadd.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1gsumadd.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
| evl1gsumadd.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
| evl1gsummul.1 | ⊢ 1 = (1r‘𝑊) |
| evl1gsummul.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
| evl1gsummul.h | ⊢ 𝐻 = (mulGrp‘𝑃) |
| evl1gsummul.f | ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) |
| Ref | Expression |
|---|---|
| evl1gsummul | ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1gsummul.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑊) | |
| 2 | evl1gsumadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 1, 2 | mgpbas 20115 | . . 3 ⊢ 𝐵 = (Base‘𝐺) |
| 4 | evl1gsummul.1 | . . . 4 ⊢ 1 = (1r‘𝑊) | |
| 5 | 1, 4 | ringidval 20153 | . . 3 ⊢ 1 = (0g‘𝐺) |
| 6 | evl1gsumadd.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 7 | evl1gsumadd.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑅) | |
| 8 | 7 | ply1crng 22167 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑊 ∈ CRing) |
| 9 | 1 | crngmgp 20211 | . . . 4 ⊢ (𝑊 ∈ CRing → 𝐺 ∈ CMnd) |
| 10 | 6, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 11 | crngring 20215 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 12 | 6, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 13 | evl1gsumadd.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
| 14 | 13 | fvexi 6901 | . . . . 5 ⊢ 𝐾 ∈ V |
| 15 | 12, 14 | jctir 520 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ Ring ∧ 𝐾 ∈ V)) |
| 16 | evl1gsumadd.p | . . . . 5 ⊢ 𝑃 = (𝑅 ↑s 𝐾) | |
| 17 | 16 | pwsring 20294 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ V) → 𝑃 ∈ Ring) |
| 18 | evl1gsummul.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑃) | |
| 19 | 18 | ringmgp 20209 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝐻 ∈ Mnd) |
| 20 | 15, 17, 19 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 21 | nn0ex 12516 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
| 23 | evl1gsumadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
| 24 | 22, 23 | ssexd 5306 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
| 25 | evl1gsumadd.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
| 26 | 25, 7, 16, 13 | evl1rhm 22303 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (𝑊 RingHom 𝑃)) |
| 27 | 1, 18 | rhmmhm 20452 | . . . 4 ⊢ (𝑄 ∈ (𝑊 RingHom 𝑃) → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
| 28 | 6, 26, 27 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
| 29 | evl1gsumadd.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) | |
| 30 | evl1gsummul.f | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) | |
| 31 | 3, 5, 10, 20, 24, 28, 29, 30 | gsummptmhm 19931 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌))) = (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
| 32 | 31 | eqcomd 2740 | 1 ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2107 Vcvv 3464 ⊆ wss 3933 class class class wbr 5125 ↦ cmpt 5207 ‘cfv 6542 (class class class)co 7414 finSupp cfsupp 9384 ℕ0cn0 12510 Basecbs 17230 Σg cgsu 17461 ↑s cpws 17467 Mndcmnd 18721 MndHom cmhm 18768 CMndccmn 19771 mulGrpcmgp 20110 1rcur 20151 Ringcrg 20203 CRingccrg 20204 RingHom crh 20442 Poly1cpl1 22145 eval1ce1 22285 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-tp 4613 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-iin 4976 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-se 5620 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-isom 6551 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-of 7680 df-ofr 7681 df-om 7871 df-1st 7997 df-2nd 7998 df-supp 8169 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-1o 8489 df-2o 8490 df-er 8728 df-map 8851 df-pm 8852 df-ixp 8921 df-en 8969 df-dom 8970 df-sdom 8971 df-fin 8972 df-fsupp 9385 df-sup 9465 df-oi 9533 df-card 9962 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-3 12313 df-4 12314 df-5 12315 df-6 12316 df-7 12317 df-8 12318 df-9 12319 df-n0 12511 df-z 12598 df-dec 12718 df-uz 12862 df-fz 13531 df-fzo 13678 df-seq 14026 df-hash 14353 df-struct 17167 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-mulr 17291 df-sca 17293 df-vsca 17294 df-ip 17295 df-tset 17296 df-ple 17297 df-ds 17299 df-hom 17301 df-cco 17302 df-0g 17462 df-gsum 17463 df-prds 17468 df-pws 17470 df-mre 17605 df-mrc 17606 df-acs 17608 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-mhm 18770 df-submnd 18771 df-grp 18928 df-minusg 18929 df-sbg 18930 df-mulg 19060 df-subg 19115 df-ghm 19205 df-cntz 19309 df-cmn 19773 df-abl 19774 df-mgp 20111 df-rng 20123 df-ur 20152 df-srg 20157 df-ring 20205 df-cring 20206 df-rhm 20445 df-subrng 20519 df-subrg 20543 df-lmod 20833 df-lss 20903 df-lsp 20943 df-assa 21840 df-asp 21841 df-ascl 21842 df-psr 21896 df-mvr 21897 df-mpl 21898 df-opsr 21900 df-evls 22065 df-evl 22066 df-psr1 22148 df-ply1 22150 df-evl1 22287 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |