| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evl1gsummul | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 15-Sep-2019.) |
| Ref | Expression |
|---|---|
| evl1gsumadd.q | ⊢ 𝑄 = (eval1‘𝑅) |
| evl1gsumadd.k | ⊢ 𝐾 = (Base‘𝑅) |
| evl1gsumadd.w | ⊢ 𝑊 = (Poly1‘𝑅) |
| evl1gsumadd.p | ⊢ 𝑃 = (𝑅 ↑s 𝐾) |
| evl1gsumadd.b | ⊢ 𝐵 = (Base‘𝑊) |
| evl1gsumadd.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| evl1gsumadd.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
| evl1gsumadd.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
| evl1gsummul.1 | ⊢ 1 = (1r‘𝑊) |
| evl1gsummul.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
| evl1gsummul.h | ⊢ 𝐻 = (mulGrp‘𝑃) |
| evl1gsummul.f | ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) |
| Ref | Expression |
|---|---|
| evl1gsummul | ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evl1gsummul.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑊) | |
| 2 | evl1gsumadd.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 1, 2 | mgpbas 20058 | . . 3 ⊢ 𝐵 = (Base‘𝐺) |
| 4 | evl1gsummul.1 | . . . 4 ⊢ 1 = (1r‘𝑊) | |
| 5 | 1, 4 | ringidval 20096 | . . 3 ⊢ 1 = (0g‘𝐺) |
| 6 | evl1gsumadd.r | . . . 4 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 7 | evl1gsumadd.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑅) | |
| 8 | 7 | ply1crng 22106 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑊 ∈ CRing) |
| 9 | 1 | crngmgp 20154 | . . . 4 ⊢ (𝑊 ∈ CRing → 𝐺 ∈ CMnd) |
| 10 | 6, 8, 9 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 11 | crngring 20158 | . . . . . 6 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 12 | 6, 11 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 13 | evl1gsumadd.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑅) | |
| 14 | 13 | fvexi 6831 | . . . . 5 ⊢ 𝐾 ∈ V |
| 15 | 12, 14 | jctir 520 | . . . 4 ⊢ (𝜑 → (𝑅 ∈ Ring ∧ 𝐾 ∈ V)) |
| 16 | evl1gsumadd.p | . . . . 5 ⊢ 𝑃 = (𝑅 ↑s 𝐾) | |
| 17 | 16 | pwsring 20237 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝐾 ∈ V) → 𝑃 ∈ Ring) |
| 18 | evl1gsummul.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑃) | |
| 19 | 18 | ringmgp 20152 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝐻 ∈ Mnd) |
| 20 | 15, 17, 19 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 21 | nn0ex 12382 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 22 | 21 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
| 23 | evl1gsumadd.n | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
| 24 | 22, 23 | ssexd 5257 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
| 25 | evl1gsumadd.q | . . . . 5 ⊢ 𝑄 = (eval1‘𝑅) | |
| 26 | 25, 7, 16, 13 | evl1rhm 22242 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝑄 ∈ (𝑊 RingHom 𝑃)) |
| 27 | 1, 18 | rhmmhm 20392 | . . . 4 ⊢ (𝑄 ∈ (𝑊 RingHom 𝑃) → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
| 28 | 6, 26, 27 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
| 29 | evl1gsumadd.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) | |
| 30 | evl1gsummul.f | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) | |
| 31 | 3, 5, 10, 20, 24, 28, 29, 30 | gsummptmhm 19847 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌))) = (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
| 32 | 31 | eqcomd 2737 | 1 ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5086 ↦ cmpt 5167 ‘cfv 6476 (class class class)co 7341 finSupp cfsupp 9240 ℕ0cn0 12376 Basecbs 17115 Σg cgsu 17339 ↑s cpws 17345 Mndcmnd 18637 MndHom cmhm 18684 CMndccmn 19687 mulGrpcmgp 20053 1rcur 20094 Ringcrg 20146 CRingccrg 20147 RingHom crh 20382 Poly1cpl1 22084 eval1ce1 22224 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5212 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 ax-cnex 11057 ax-resscn 11058 ax-1cn 11059 ax-icn 11060 ax-addcl 11061 ax-addrcl 11062 ax-mulcl 11063 ax-mulrcl 11064 ax-mulcom 11065 ax-addass 11066 ax-mulass 11067 ax-distr 11068 ax-i2m1 11069 ax-1ne0 11070 ax-1rid 11071 ax-rnegex 11072 ax-rrecex 11073 ax-cnre 11074 ax-pre-lttri 11075 ax-pre-lttrn 11076 ax-pre-ltadd 11077 ax-pre-mulgt0 11078 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-tp 4576 df-op 4578 df-uni 4855 df-int 4893 df-iun 4938 df-iin 4939 df-br 5087 df-opab 5149 df-mpt 5168 df-tr 5194 df-id 5506 df-eprel 5511 df-po 5519 df-so 5520 df-fr 5564 df-se 5565 df-we 5566 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-rn 5622 df-res 5623 df-ima 5624 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7298 df-ov 7344 df-oprab 7345 df-mpo 7346 df-of 7605 df-ofr 7606 df-om 7792 df-1st 7916 df-2nd 7917 df-supp 8086 df-frecs 8206 df-wrecs 8237 df-recs 8286 df-rdg 8324 df-1o 8380 df-2o 8381 df-er 8617 df-map 8747 df-pm 8748 df-ixp 8817 df-en 8865 df-dom 8866 df-sdom 8867 df-fin 8868 df-fsupp 9241 df-sup 9321 df-oi 9391 df-card 9827 df-pnf 11143 df-mnf 11144 df-xr 11145 df-ltxr 11146 df-le 11147 df-sub 11341 df-neg 11342 df-nn 12121 df-2 12183 df-3 12184 df-4 12185 df-5 12186 df-6 12187 df-7 12188 df-8 12189 df-9 12190 df-n0 12377 df-z 12464 df-dec 12584 df-uz 12728 df-fz 13403 df-fzo 13550 df-seq 13904 df-hash 14233 df-struct 17053 df-sets 17070 df-slot 17088 df-ndx 17100 df-base 17116 df-ress 17137 df-plusg 17169 df-mulr 17170 df-sca 17172 df-vsca 17173 df-ip 17174 df-tset 17175 df-ple 17176 df-ds 17178 df-hom 17180 df-cco 17181 df-0g 17340 df-gsum 17341 df-prds 17346 df-pws 17348 df-mre 17483 df-mrc 17484 df-acs 17486 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-grp 18844 df-minusg 18845 df-sbg 18846 df-mulg 18976 df-subg 19031 df-ghm 19120 df-cntz 19224 df-cmn 19689 df-abl 19690 df-mgp 20054 df-rng 20066 df-ur 20095 df-srg 20100 df-ring 20148 df-cring 20149 df-rhm 20385 df-subrng 20456 df-subrg 20480 df-lmod 20790 df-lss 20860 df-lsp 20900 df-assa 21785 df-asp 21786 df-ascl 21787 df-psr 21841 df-mvr 21842 df-mpl 21843 df-opsr 21845 df-evls 22004 df-evl 22005 df-psr1 22087 df-ply1 22089 df-evl1 22226 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |