![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evls1gsummul | Structured version Visualization version GIF version |
Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 14-Sep-2019.) |
Ref | Expression |
---|---|
evls1gsummul.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
evls1gsummul.k | ⊢ 𝐾 = (Base‘𝑆) |
evls1gsummul.w | ⊢ 𝑊 = (Poly1‘𝑈) |
evls1gsummul.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
evls1gsummul.1 | ⊢ 1 = (1r‘𝑊) |
evls1gsummul.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evls1gsummul.p | ⊢ 𝑃 = (𝑆 ↑s 𝐾) |
evls1gsummul.h | ⊢ 𝐻 = (mulGrp‘𝑃) |
evls1gsummul.b | ⊢ 𝐵 = (Base‘𝑊) |
evls1gsummul.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evls1gsummul.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evls1gsummul.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
evls1gsummul.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
evls1gsummul.f | ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) |
Ref | Expression |
---|---|
evls1gsummul | ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evls1gsummul.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑊) | |
2 | evls1gsummul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
3 | 1, 2 | mgpbas 20092 | . . 3 ⊢ 𝐵 = (Base‘𝐺) |
4 | evls1gsummul.1 | . . . 4 ⊢ 1 = (1r‘𝑊) | |
5 | 1, 4 | ringidval 20135 | . . 3 ⊢ 1 = (0g‘𝐺) |
6 | evls1gsummul.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
7 | evls1gsummul.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
8 | evls1gsummul.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
9 | 8 | subrgcrng 20526 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) |
10 | 6, 7, 9 | syl2anc 582 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ CRing) |
11 | evls1gsummul.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑈) | |
12 | 11 | ply1crng 22141 | . . . 4 ⊢ (𝑈 ∈ CRing → 𝑊 ∈ CRing) |
13 | 1 | crngmgp 20193 | . . . 4 ⊢ (𝑊 ∈ CRing → 𝐺 ∈ CMnd) |
14 | 10, 12, 13 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
15 | crngring 20197 | . . . . . 6 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
16 | 6, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Ring) |
17 | evls1gsummul.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
18 | 17 | fvexi 6910 | . . . . 5 ⊢ 𝐾 ∈ V |
19 | 16, 18 | jctir 519 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ Ring ∧ 𝐾 ∈ V)) |
20 | evls1gsummul.p | . . . . 5 ⊢ 𝑃 = (𝑆 ↑s 𝐾) | |
21 | 20 | pwsring 20272 | . . . 4 ⊢ ((𝑆 ∈ Ring ∧ 𝐾 ∈ V) → 𝑃 ∈ Ring) |
22 | evls1gsummul.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑃) | |
23 | 22 | ringmgp 20191 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝐻 ∈ Mnd) |
24 | 19, 21, 23 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
25 | nn0ex 12511 | . . . . 5 ⊢ ℕ0 ∈ V | |
26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
27 | evls1gsummul.n | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
28 | 26, 27 | ssexd 5325 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
29 | evls1gsummul.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
30 | 29, 17, 20, 8, 11 | evls1rhm 22266 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑃)) |
31 | 6, 7, 30 | syl2anc 582 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom 𝑃)) |
32 | 1, 22 | rhmmhm 20430 | . . . 4 ⊢ (𝑄 ∈ (𝑊 RingHom 𝑃) → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
33 | 31, 32 | syl 17 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
34 | evls1gsummul.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) | |
35 | evls1gsummul.f | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) | |
36 | 3, 5, 14, 24, 28, 33, 34, 35 | gsummptmhm 19907 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌))) = (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
37 | 36 | eqcomd 2731 | 1 ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 Vcvv 3461 ⊆ wss 3944 class class class wbr 5149 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 finSupp cfsupp 9387 ℕ0cn0 12505 Basecbs 17183 ↾s cress 17212 Σg cgsu 17425 ↑s cpws 17431 Mndcmnd 18697 MndHom cmhm 18741 CMndccmn 19747 mulGrpcmgp 20086 1rcur 20133 Ringcrg 20185 CRingccrg 20186 RingHom crh 20420 SubRingcsubrg 20518 Poly1cpl1 22119 evalSub1 ces1 22257 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-ofr 7686 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-pm 8848 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-fzo 13663 df-seq 14003 df-hash 14326 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-0g 17426 df-gsum 17427 df-prds 17432 df-pws 17434 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-mulg 19032 df-subg 19086 df-ghm 19176 df-cntz 19280 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-srg 20139 df-ring 20187 df-cring 20188 df-rhm 20423 df-subrng 20495 df-subrg 20520 df-lmod 20757 df-lss 20828 df-lsp 20868 df-assa 21804 df-asp 21805 df-ascl 21806 df-psr 21859 df-mvr 21860 df-mpl 21861 df-opsr 21863 df-evls 22040 df-psr1 22122 df-ply1 22124 df-evls1 22259 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |