| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > evls1gsummul | Structured version Visualization version GIF version | ||
| Description: Univariate polynomial evaluation maps (multiplicative) group sums to group sums. (Contributed by AV, 14-Sep-2019.) |
| Ref | Expression |
|---|---|
| evls1gsummul.q | ⊢ 𝑄 = (𝑆 evalSub1 𝑅) |
| evls1gsummul.k | ⊢ 𝐾 = (Base‘𝑆) |
| evls1gsummul.w | ⊢ 𝑊 = (Poly1‘𝑈) |
| evls1gsummul.g | ⊢ 𝐺 = (mulGrp‘𝑊) |
| evls1gsummul.1 | ⊢ 1 = (1r‘𝑊) |
| evls1gsummul.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
| evls1gsummul.p | ⊢ 𝑃 = (𝑆 ↑s 𝐾) |
| evls1gsummul.h | ⊢ 𝐻 = (mulGrp‘𝑃) |
| evls1gsummul.b | ⊢ 𝐵 = (Base‘𝑊) |
| evls1gsummul.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
| evls1gsummul.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
| evls1gsummul.y | ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) |
| evls1gsummul.n | ⊢ (𝜑 → 𝑁 ⊆ ℕ0) |
| evls1gsummul.f | ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) |
| Ref | Expression |
|---|---|
| evls1gsummul | ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evls1gsummul.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑊) | |
| 2 | evls1gsummul.b | . . . 4 ⊢ 𝐵 = (Base‘𝑊) | |
| 3 | 1, 2 | mgpbas 20071 | . . 3 ⊢ 𝐵 = (Base‘𝐺) |
| 4 | evls1gsummul.1 | . . . 4 ⊢ 1 = (1r‘𝑊) | |
| 5 | 1, 4 | ringidval 20109 | . . 3 ⊢ 1 = (0g‘𝐺) |
| 6 | evls1gsummul.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
| 7 | evls1gsummul.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
| 8 | evls1gsummul.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
| 9 | 8 | subrgcrng 20499 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑈 ∈ CRing) |
| 10 | 6, 7, 9 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑈 ∈ CRing) |
| 11 | evls1gsummul.w | . . . . 5 ⊢ 𝑊 = (Poly1‘𝑈) | |
| 12 | 11 | ply1crng 22130 | . . . 4 ⊢ (𝑈 ∈ CRing → 𝑊 ∈ CRing) |
| 13 | 1 | crngmgp 20167 | . . . 4 ⊢ (𝑊 ∈ CRing → 𝐺 ∈ CMnd) |
| 14 | 10, 12, 13 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐺 ∈ CMnd) |
| 15 | crngring 20171 | . . . . . 6 ⊢ (𝑆 ∈ CRing → 𝑆 ∈ Ring) | |
| 16 | 6, 15 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ Ring) |
| 17 | evls1gsummul.k | . . . . . 6 ⊢ 𝐾 = (Base‘𝑆) | |
| 18 | 17 | fvexi 6845 | . . . . 5 ⊢ 𝐾 ∈ V |
| 19 | 16, 18 | jctir 520 | . . . 4 ⊢ (𝜑 → (𝑆 ∈ Ring ∧ 𝐾 ∈ V)) |
| 20 | evls1gsummul.p | . . . . 5 ⊢ 𝑃 = (𝑆 ↑s 𝐾) | |
| 21 | 20 | pwsring 20250 | . . . 4 ⊢ ((𝑆 ∈ Ring ∧ 𝐾 ∈ V) → 𝑃 ∈ Ring) |
| 22 | evls1gsummul.h | . . . . 5 ⊢ 𝐻 = (mulGrp‘𝑃) | |
| 23 | 22 | ringmgp 20165 | . . . 4 ⊢ (𝑃 ∈ Ring → 𝐻 ∈ Mnd) |
| 24 | 19, 21, 23 | 3syl 18 | . . 3 ⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 25 | nn0ex 12398 | . . . . 5 ⊢ ℕ0 ∈ V | |
| 26 | 25 | a1i 11 | . . . 4 ⊢ (𝜑 → ℕ0 ∈ V) |
| 27 | evls1gsummul.n | . . . 4 ⊢ (𝜑 → 𝑁 ⊆ ℕ0) | |
| 28 | 26, 27 | ssexd 5266 | . . 3 ⊢ (𝜑 → 𝑁 ∈ V) |
| 29 | evls1gsummul.q | . . . . . 6 ⊢ 𝑄 = (𝑆 evalSub1 𝑅) | |
| 30 | 29, 17, 20, 8, 11 | evls1rhm 22257 | . . . . 5 ⊢ ((𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → 𝑄 ∈ (𝑊 RingHom 𝑃)) |
| 31 | 6, 7, 30 | syl2anc 584 | . . . 4 ⊢ (𝜑 → 𝑄 ∈ (𝑊 RingHom 𝑃)) |
| 32 | 1, 22 | rhmmhm 20406 | . . . 4 ⊢ (𝑄 ∈ (𝑊 RingHom 𝑃) → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
| 33 | 31, 32 | syl 17 | . . 3 ⊢ (𝜑 → 𝑄 ∈ (𝐺 MndHom 𝐻)) |
| 34 | evls1gsummul.y | . . 3 ⊢ ((𝜑 ∧ 𝑥 ∈ 𝑁) → 𝑌 ∈ 𝐵) | |
| 35 | evls1gsummul.f | . . 3 ⊢ (𝜑 → (𝑥 ∈ 𝑁 ↦ 𝑌) finSupp 1 ) | |
| 36 | 3, 5, 14, 24, 28, 33, 34, 35 | gsummptmhm 19860 | . 2 ⊢ (𝜑 → (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌))) = (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌)))) |
| 37 | 36 | eqcomd 2739 | 1 ⊢ (𝜑 → (𝑄‘(𝐺 Σg (𝑥 ∈ 𝑁 ↦ 𝑌))) = (𝐻 Σg (𝑥 ∈ 𝑁 ↦ (𝑄‘𝑌)))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ⊆ wss 3898 class class class wbr 5095 ↦ cmpt 5176 ‘cfv 6489 (class class class)co 7355 finSupp cfsupp 9256 ℕ0cn0 12392 Basecbs 17127 ↾s cress 17148 Σg cgsu 17351 ↑s cpws 17357 Mndcmnd 18650 MndHom cmhm 18697 CMndccmn 19700 mulGrpcmgp 20066 1rcur 20107 Ringcrg 20159 CRingccrg 20160 RingHom crh 20396 SubRingcsubrg 20493 Poly1cpl1 22108 evalSub1 ces1 22248 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-tp 4582 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-iin 4946 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-se 5575 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-isom 6498 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-of 7619 df-ofr 7620 df-om 7806 df-1st 7930 df-2nd 7931 df-supp 8100 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-1o 8394 df-2o 8395 df-er 8631 df-map 8761 df-pm 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9257 df-sup 9337 df-oi 9407 df-card 9843 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-3 12200 df-4 12201 df-5 12202 df-6 12203 df-7 12204 df-8 12205 df-9 12206 df-n0 12393 df-z 12480 df-dec 12599 df-uz 12743 df-fz 13415 df-fzo 13562 df-seq 13916 df-hash 14245 df-struct 17065 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-mulr 17182 df-sca 17184 df-vsca 17185 df-ip 17186 df-tset 17187 df-ple 17188 df-ds 17190 df-hom 17192 df-cco 17193 df-0g 17352 df-gsum 17353 df-prds 17358 df-pws 17360 df-mre 17496 df-mrc 17497 df-acs 17499 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-mhm 18699 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-mulg 18989 df-subg 19044 df-ghm 19133 df-cntz 19237 df-cmn 19702 df-abl 19703 df-mgp 20067 df-rng 20079 df-ur 20108 df-srg 20113 df-ring 20161 df-cring 20162 df-rhm 20399 df-subrng 20470 df-subrg 20494 df-lmod 20804 df-lss 20874 df-lsp 20914 df-assa 21799 df-asp 21800 df-ascl 21801 df-psr 21856 df-mvr 21857 df-mpl 21858 df-opsr 21860 df-evls 22020 df-psr1 22111 df-ply1 22113 df-evls1 22250 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |