| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > madetsmelbas | Structured version Visualization version GIF version | ||
| Description: A summand of the determinant of a matrix belongs to the underlying ring. (Contributed by AV, 1-Jan-2019.) |
| Ref | Expression |
|---|---|
| madetsmelbas.p | ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) |
| madetsmelbas.s | ⊢ 𝑆 = (pmSgn‘𝑁) |
| madetsmelbas.y | ⊢ 𝑌 = (ℤRHom‘𝑅) |
| madetsmelbas.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| madetsmelbas.b | ⊢ 𝐵 = (Base‘𝐴) |
| madetsmelbas.g | ⊢ 𝐺 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| madetsmelbas | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | crngring 20130 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 2 | 1 | 3ad2ant1 1133 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → 𝑅 ∈ Ring) |
| 3 | madetsmelbas.a | . . . . . 6 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 4 | madetsmelbas.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝐴) | |
| 5 | 3, 4 | matrcl 22275 | . . . . 5 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 6 | 5 | simpld 494 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → 𝑁 ∈ Fin) |
| 7 | 6 | 3ad2ant2 1134 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → 𝑁 ∈ Fin) |
| 8 | simp3 1138 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → 𝑄 ∈ 𝑃) | |
| 9 | madetsmelbas.p | . . . 4 ⊢ 𝑃 = (Base‘(SymGrp‘𝑁)) | |
| 10 | madetsmelbas.s | . . . 4 ⊢ 𝑆 = (pmSgn‘𝑁) | |
| 11 | madetsmelbas.y | . . . 4 ⊢ 𝑌 = (ℤRHom‘𝑅) | |
| 12 | 9, 10, 11 | zrhcopsgnelbas 21480 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑁 ∈ Fin ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) |
| 13 | 2, 7, 8, 12 | syl3anc 1373 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅)) |
| 14 | madetsmelbas.g | . . . 4 ⊢ 𝐺 = (mulGrp‘𝑅) | |
| 15 | eqid 2729 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 16 | 14, 15 | mgpbas 20030 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝐺) |
| 17 | 14 | crngmgp 20126 | . . . 4 ⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
| 18 | 17 | 3ad2ant1 1133 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → 𝐺 ∈ CMnd) |
| 19 | simp2 1137 | . . . 4 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → 𝑀 ∈ 𝐵) | |
| 20 | 3, 4, 9 | matepmcl 22325 | . . . 4 ⊢ ((𝑅 ∈ Ring ∧ 𝑄 ∈ 𝑃 ∧ 𝑀 ∈ 𝐵) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
| 21 | 2, 8, 19, 20 | syl3anc 1373 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → ∀𝑛 ∈ 𝑁 ((𝑄‘𝑛)𝑀𝑛) ∈ (Base‘𝑅)) |
| 22 | 16, 18, 7, 21 | gsummptcl 19873 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) |
| 23 | eqid 2729 | . . 3 ⊢ (.r‘𝑅) = (.r‘𝑅) | |
| 24 | 15, 23 | ringcl 20135 | . 2 ⊢ ((𝑅 ∈ Ring ∧ ((𝑌 ∘ 𝑆)‘𝑄) ∈ (Base‘𝑅) ∧ (𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛))) ∈ (Base‘𝑅)) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) |
| 25 | 2, 13, 22, 24 | syl3anc 1373 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑄 ∈ 𝑃) → (((𝑌 ∘ 𝑆)‘𝑄)(.r‘𝑅)(𝐺 Σg (𝑛 ∈ 𝑁 ↦ ((𝑄‘𝑛)𝑀𝑛)))) ∈ (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ∀wral 3044 Vcvv 3444 ↦ cmpt 5183 ∘ ccom 5635 ‘cfv 6499 (class class class)co 7369 Fincfn 8895 Basecbs 17155 .rcmulr 17197 Σg cgsu 17379 SymGrpcsymg 19275 pmSgncpsgn 19395 CMndccmn 19686 mulGrpcmgp 20025 Ringcrg 20118 CRingccrg 20119 ℤRHomczrh 21385 Mat cmat 22270 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5229 ax-sep 5246 ax-nul 5256 ax-pow 5315 ax-pr 5382 ax-un 7691 ax-cnex 11100 ax-resscn 11101 ax-1cn 11102 ax-icn 11103 ax-addcl 11104 ax-addrcl 11105 ax-mulcl 11106 ax-mulrcl 11107 ax-mulcom 11108 ax-addass 11109 ax-mulass 11110 ax-distr 11111 ax-i2m1 11112 ax-1ne0 11113 ax-1rid 11114 ax-rnegex 11115 ax-rrecex 11116 ax-cnre 11117 ax-pre-lttri 11118 ax-pre-lttrn 11119 ax-pre-ltadd 11120 ax-pre-mulgt0 11121 ax-addf 11123 ax-mulf 11124 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-xor 1512 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3351 df-reu 3352 df-rab 3403 df-v 3446 df-sbc 3751 df-csb 3860 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-pss 3931 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-tp 4590 df-op 4592 df-ot 4594 df-uni 4868 df-int 4907 df-iun 4953 df-iin 4954 df-br 5103 df-opab 5165 df-mpt 5184 df-tr 5210 df-id 5526 df-eprel 5531 df-po 5539 df-so 5540 df-fr 5584 df-se 5585 df-we 5586 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-pred 6262 df-ord 6323 df-on 6324 df-lim 6325 df-suc 6326 df-iota 6452 df-fun 6501 df-fn 6502 df-f 6503 df-f1 6504 df-fo 6505 df-f1o 6506 df-fv 6507 df-isom 6508 df-riota 7326 df-ov 7372 df-oprab 7373 df-mpo 7374 df-om 7823 df-1st 7947 df-2nd 7948 df-supp 8117 df-tpos 8182 df-frecs 8237 df-wrecs 8268 df-recs 8317 df-rdg 8355 df-1o 8411 df-2o 8412 df-er 8648 df-map 8778 df-ixp 8848 df-en 8896 df-dom 8897 df-sdom 8898 df-fin 8899 df-fsupp 9289 df-sup 9369 df-oi 9439 df-card 9868 df-pnf 11186 df-mnf 11187 df-xr 11188 df-ltxr 11189 df-le 11190 df-sub 11383 df-neg 11384 df-div 11812 df-nn 12163 df-2 12225 df-3 12226 df-4 12227 df-5 12228 df-6 12229 df-7 12230 df-8 12231 df-9 12232 df-n0 12419 df-xnn0 12492 df-z 12506 df-dec 12626 df-uz 12770 df-rp 12928 df-fz 13445 df-fzo 13592 df-seq 13943 df-exp 14003 df-hash 14272 df-word 14455 df-lsw 14504 df-concat 14512 df-s1 14537 df-substr 14582 df-pfx 14612 df-splice 14691 df-reverse 14700 df-s2 14790 df-struct 17093 df-sets 17110 df-slot 17128 df-ndx 17140 df-base 17156 df-ress 17177 df-plusg 17209 df-mulr 17210 df-starv 17211 df-sca 17212 df-vsca 17213 df-ip 17214 df-tset 17215 df-ple 17216 df-ds 17218 df-unif 17219 df-hom 17220 df-cco 17221 df-0g 17380 df-gsum 17381 df-prds 17386 df-pws 17388 df-mre 17523 df-mrc 17524 df-acs 17526 df-mgm 18543 df-sgrp 18622 df-mnd 18638 df-mhm 18686 df-submnd 18687 df-efmnd 18772 df-grp 18844 df-minusg 18845 df-mulg 18976 df-subg 19031 df-ghm 19121 df-gim 19167 df-cntz 19225 df-oppg 19254 df-symg 19276 df-pmtr 19348 df-psgn 19397 df-cmn 19688 df-abl 19689 df-mgp 20026 df-rng 20038 df-ur 20067 df-ring 20120 df-cring 20121 df-rhm 20357 df-subrng 20431 df-subrg 20455 df-sra 21056 df-rgmod 21057 df-cnfld 21241 df-zring 21333 df-zrh 21389 df-dsmm 21617 df-frlm 21632 df-mat 22271 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |