Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgpsumn | Structured version Visualization version GIF version |
Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the one of the ring, this summand/ factor can be removed from the group sum. (Contributed by AV, 29-Dec-2018.) |
Ref | Expression |
---|---|
mgpsumunsn.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpsumunsn.t | ⊢ · = (.r‘𝑅) |
mgpsumunsn.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mgpsumunsn.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mgpsumunsn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mgpsumunsn.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
mgpsumn.n | ⊢ 1 = (1r‘𝑅) |
mgpsumn.1 | ⊢ (𝑘 = 𝐼 → 𝐴 = 1 ) |
Ref | Expression |
---|---|
mgpsumn | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpsumunsn.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | mgpsumunsn.t | . . 3 ⊢ · = (.r‘𝑅) | |
3 | mgpsumunsn.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
4 | mgpsumunsn.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
5 | mgpsumunsn.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
6 | mgpsumunsn.a | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) | |
7 | crngring 19710 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
8 | 3, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | eqid 2738 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
10 | mgpsumn.n | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
11 | 9, 10 | ringidcl 19722 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
12 | 8, 11 | syl 17 | . . 3 ⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
13 | mgpsumn.1 | . . 3 ⊢ (𝑘 = 𝐼 → 𝐴 = 1 ) | |
14 | 1, 2, 3, 4, 5, 6, 12, 13 | mgpsumunsn 45585 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 )) |
15 | 1, 9 | mgpbas 19641 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑀) |
16 | 1 | crngmgp 19706 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
17 | 3, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ CMnd) |
18 | diffi 8979 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin) | |
19 | 4, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin) |
20 | eldifi 4057 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘 ∈ 𝑁) | |
21 | 20, 6 | sylan2 592 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅)) |
22 | 21 | ralrimiva 3107 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (𝑁 ∖ {𝐼})𝐴 ∈ (Base‘𝑅)) |
23 | 15, 17, 19, 22 | gsummptcl 19483 | . . 3 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
24 | 9, 2, 10 | ringridm 19726 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 ) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
25 | 8, 23, 24 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 ) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
26 | 14, 25 | eqtrd 2778 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∖ cdif 3880 {csn 4558 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 Basecbs 16840 .rcmulr 16889 Σg cgsu 17068 CMndccmn 19301 mulGrpcmgp 19635 1rcur 19652 Ringcrg 19698 CRingccrg 19699 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-mulg 18616 df-cntz 18838 df-cmn 19303 df-mgp 19636 df-ur 19653 df-ring 19700 df-cring 19701 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |