Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgpsumn | Structured version Visualization version GIF version |
Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the one of the ring, this summand/ factor can be removed from the group sum. (Contributed by AV, 29-Dec-2018.) |
Ref | Expression |
---|---|
mgpsumunsn.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpsumunsn.t | ⊢ · = (.r‘𝑅) |
mgpsumunsn.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mgpsumunsn.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mgpsumunsn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mgpsumunsn.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
mgpsumn.n | ⊢ 1 = (1r‘𝑅) |
mgpsumn.1 | ⊢ (𝑘 = 𝐼 → 𝐴 = 1 ) |
Ref | Expression |
---|---|
mgpsumn | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpsumunsn.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | mgpsumunsn.t | . . 3 ⊢ · = (.r‘𝑅) | |
3 | mgpsumunsn.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
4 | mgpsumunsn.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
5 | mgpsumunsn.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
6 | mgpsumunsn.a | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) | |
7 | crngring 19382 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
8 | 3, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | eqid 2758 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
10 | mgpsumn.n | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
11 | 9, 10 | ringidcl 19394 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
12 | 8, 11 | syl 17 | . . 3 ⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
13 | mgpsumn.1 | . . 3 ⊢ (𝑘 = 𝐼 → 𝐴 = 1 ) | |
14 | 1, 2, 3, 4, 5, 6, 12, 13 | mgpsumunsn 45158 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 )) |
15 | 1, 9 | mgpbas 19318 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑀) |
16 | 1 | crngmgp 19378 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
17 | 3, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ CMnd) |
18 | diffi 8791 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin) | |
19 | 4, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin) |
20 | eldifi 4034 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘 ∈ 𝑁) | |
21 | 20, 6 | sylan2 595 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅)) |
22 | 21 | ralrimiva 3113 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (𝑁 ∖ {𝐼})𝐴 ∈ (Base‘𝑅)) |
23 | 15, 17, 19, 22 | gsummptcl 19160 | . . 3 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
24 | 9, 2, 10 | ringridm 19398 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 ) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
25 | 8, 23, 24 | syl2anc 587 | . 2 ⊢ (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 ) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
26 | 14, 25 | eqtrd 2793 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 = wceq 1538 ∈ wcel 2111 ∖ cdif 3857 {csn 4525 ↦ cmpt 5115 ‘cfv 6339 (class class class)co 7155 Fincfn 8532 Basecbs 16546 .rcmulr 16629 Σg cgsu 16777 CMndccmn 18978 mulGrpcmgp 19312 1rcur 19324 Ringcrg 19370 CRingccrg 19371 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1911 ax-6 1970 ax-7 2015 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2158 ax-12 2175 ax-ext 2729 ax-rep 5159 ax-sep 5172 ax-nul 5179 ax-pow 5237 ax-pr 5301 ax-un 7464 ax-cnex 10636 ax-resscn 10637 ax-1cn 10638 ax-icn 10639 ax-addcl 10640 ax-addrcl 10641 ax-mulcl 10642 ax-mulrcl 10643 ax-mulcom 10644 ax-addass 10645 ax-mulass 10646 ax-distr 10647 ax-i2m1 10648 ax-1ne0 10649 ax-1rid 10650 ax-rnegex 10651 ax-rrecex 10652 ax-cnre 10653 ax-pre-lttri 10654 ax-pre-lttrn 10655 ax-pre-ltadd 10656 ax-pre-mulgt0 10657 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 845 df-3or 1085 df-3an 1086 df-tru 1541 df-fal 1551 df-ex 1782 df-nf 1786 df-sb 2070 df-mo 2557 df-eu 2588 df-clab 2736 df-cleq 2750 df-clel 2830 df-nfc 2901 df-ne 2952 df-nel 3056 df-ral 3075 df-rex 3076 df-reu 3077 df-rmo 3078 df-rab 3079 df-v 3411 df-sbc 3699 df-csb 3808 df-dif 3863 df-un 3865 df-in 3867 df-ss 3877 df-pss 3879 df-nul 4228 df-if 4424 df-pw 4499 df-sn 4526 df-pr 4528 df-tp 4530 df-op 4532 df-uni 4802 df-int 4842 df-iun 4888 df-iin 4889 df-br 5036 df-opab 5098 df-mpt 5116 df-tr 5142 df-id 5433 df-eprel 5438 df-po 5446 df-so 5447 df-fr 5486 df-se 5487 df-we 5488 df-xp 5533 df-rel 5534 df-cnv 5535 df-co 5536 df-dm 5537 df-rn 5538 df-res 5539 df-ima 5540 df-pred 6130 df-ord 6176 df-on 6177 df-lim 6178 df-suc 6179 df-iota 6298 df-fun 6341 df-fn 6342 df-f 6343 df-f1 6344 df-fo 6345 df-f1o 6346 df-fv 6347 df-isom 6348 df-riota 7113 df-ov 7158 df-oprab 7159 df-mpo 7160 df-of 7410 df-om 7585 df-1st 7698 df-2nd 7699 df-supp 7841 df-wrecs 7962 df-recs 8023 df-rdg 8061 df-1o 8117 df-er 8304 df-en 8533 df-dom 8534 df-sdom 8535 df-fin 8536 df-fsupp 8872 df-oi 9012 df-card 9406 df-pnf 10720 df-mnf 10721 df-xr 10722 df-ltxr 10723 df-le 10724 df-sub 10915 df-neg 10916 df-nn 11680 df-2 11742 df-n0 11940 df-z 12026 df-uz 12288 df-fz 12945 df-fzo 13088 df-seq 13424 df-hash 13746 df-ndx 16549 df-slot 16550 df-base 16552 df-sets 16553 df-ress 16554 df-plusg 16641 df-0g 16778 df-gsum 16779 df-mre 16920 df-mrc 16921 df-acs 16923 df-mgm 17923 df-sgrp 17972 df-mnd 17983 df-submnd 18028 df-mulg 18297 df-cntz 18519 df-cmn 18980 df-mgp 19313 df-ur 19325 df-ring 19372 df-cring 19373 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |