| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > mgpsumn | Structured version Visualization version GIF version | ||
| Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the one of the ring, this summand/ factor can be removed from the group sum. (Contributed by AV, 29-Dec-2018.) |
| Ref | Expression |
|---|---|
| mgpsumunsn.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
| mgpsumunsn.t | ⊢ · = (.r‘𝑅) |
| mgpsumunsn.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
| mgpsumunsn.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
| mgpsumunsn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
| mgpsumunsn.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
| mgpsumn.n | ⊢ 1 = (1r‘𝑅) |
| mgpsumn.1 | ⊢ (𝑘 = 𝐼 → 𝐴 = 1 ) |
| Ref | Expression |
|---|---|
| mgpsumn | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mgpsumunsn.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
| 2 | mgpsumunsn.t | . . 3 ⊢ · = (.r‘𝑅) | |
| 3 | mgpsumunsn.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
| 4 | mgpsumunsn.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
| 5 | mgpsumunsn.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
| 6 | mgpsumunsn.a | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) | |
| 7 | crngring 20130 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
| 8 | 3, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
| 9 | eqid 2729 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 10 | mgpsumn.n | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
| 11 | 9, 10 | ringidcl 20150 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
| 12 | 8, 11 | syl 17 | . . 3 ⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
| 13 | mgpsumn.1 | . . 3 ⊢ (𝑘 = 𝐼 → 𝐴 = 1 ) | |
| 14 | 1, 2, 3, 4, 5, 6, 12, 13 | mgpsumunsn 48349 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 )) |
| 15 | 1, 9 | mgpbas 20030 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑀) |
| 16 | 1 | crngmgp 20126 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
| 17 | 3, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ CMnd) |
| 18 | diffi 9089 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin) | |
| 19 | 4, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin) |
| 20 | eldifi 4082 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘 ∈ 𝑁) | |
| 21 | 20, 6 | sylan2 593 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅)) |
| 22 | 21 | ralrimiva 3121 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (𝑁 ∖ {𝐼})𝐴 ∈ (Base‘𝑅)) |
| 23 | 15, 17, 19, 22 | gsummptcl 19846 | . . 3 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
| 24 | 9, 2, 10 | ringridm 20155 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 ) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
| 25 | 8, 23, 24 | syl2anc 584 | . 2 ⊢ (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 ) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
| 26 | 14, 25 | eqtrd 2764 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∖ cdif 3900 {csn 4577 ↦ cmpt 5173 ‘cfv 6482 (class class class)co 7349 Fincfn 8872 Basecbs 17120 .rcmulr 17162 Σg cgsu 17344 CMndccmn 19659 mulGrpcmgp 20025 1rcur 20066 Ringcrg 20118 CRingccrg 20119 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5218 ax-sep 5235 ax-nul 5245 ax-pow 5304 ax-pr 5371 ax-un 7671 ax-cnex 11065 ax-resscn 11066 ax-1cn 11067 ax-icn 11068 ax-addcl 11069 ax-addrcl 11070 ax-mulcl 11071 ax-mulrcl 11072 ax-mulcom 11073 ax-addass 11074 ax-mulass 11075 ax-distr 11076 ax-i2m1 11077 ax-1ne0 11078 ax-1rid 11079 ax-rnegex 11080 ax-rrecex 11081 ax-cnre 11082 ax-pre-lttri 11083 ax-pre-lttrn 11084 ax-pre-ltadd 11085 ax-pre-mulgt0 11086 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3395 df-v 3438 df-sbc 3743 df-csb 3852 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-pss 3923 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-int 4897 df-iun 4943 df-iin 4944 df-br 5093 df-opab 5155 df-mpt 5174 df-tr 5200 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6249 df-ord 6310 df-on 6311 df-lim 6312 df-suc 6313 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-isom 6491 df-riota 7306 df-ov 7352 df-oprab 7353 df-mpo 7354 df-of 7613 df-om 7800 df-1st 7924 df-2nd 7925 df-supp 8094 df-frecs 8214 df-wrecs 8245 df-recs 8294 df-rdg 8332 df-1o 8388 df-2o 8389 df-er 8625 df-en 8873 df-dom 8874 df-sdom 8875 df-fin 8876 df-fsupp 9252 df-oi 9402 df-card 9835 df-pnf 11151 df-mnf 11152 df-xr 11153 df-ltxr 11154 df-le 11155 df-sub 11349 df-neg 11350 df-nn 12129 df-2 12191 df-n0 12385 df-z 12472 df-uz 12736 df-fz 13411 df-fzo 13558 df-seq 13909 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18514 df-sgrp 18593 df-mnd 18609 df-submnd 18658 df-mulg 18947 df-cntz 19196 df-cmn 19661 df-mgp 20026 df-ur 20067 df-ring 20120 df-cring 20121 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |