![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > mgpsumn | Structured version Visualization version GIF version |
Description: If the group sum for the multiplicative group of a unital ring contains a summand/factor that is the one of the ring, this summand/ factor can be removed from the group sum. (Contributed by AV, 29-Dec-2018.) |
Ref | Expression |
---|---|
mgpsumunsn.m | ⊢ 𝑀 = (mulGrp‘𝑅) |
mgpsumunsn.t | ⊢ · = (.r‘𝑅) |
mgpsumunsn.r | ⊢ (𝜑 → 𝑅 ∈ CRing) |
mgpsumunsn.n | ⊢ (𝜑 → 𝑁 ∈ Fin) |
mgpsumunsn.i | ⊢ (𝜑 → 𝐼 ∈ 𝑁) |
mgpsumunsn.a | ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) |
mgpsumn.n | ⊢ 1 = (1r‘𝑅) |
mgpsumn.1 | ⊢ (𝑘 = 𝐼 → 𝐴 = 1 ) |
Ref | Expression |
---|---|
mgpsumn | ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mgpsumunsn.m | . . 3 ⊢ 𝑀 = (mulGrp‘𝑅) | |
2 | mgpsumunsn.t | . . 3 ⊢ · = (.r‘𝑅) | |
3 | mgpsumunsn.r | . . 3 ⊢ (𝜑 → 𝑅 ∈ CRing) | |
4 | mgpsumunsn.n | . . 3 ⊢ (𝜑 → 𝑁 ∈ Fin) | |
5 | mgpsumunsn.i | . . 3 ⊢ (𝜑 → 𝐼 ∈ 𝑁) | |
6 | mgpsumunsn.a | . . 3 ⊢ ((𝜑 ∧ 𝑘 ∈ 𝑁) → 𝐴 ∈ (Base‘𝑅)) | |
7 | crngring 19044 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | |
8 | 3, 7 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑅 ∈ Ring) |
9 | eqid 2773 | . . . . 5 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
10 | mgpsumn.n | . . . . 5 ⊢ 1 = (1r‘𝑅) | |
11 | 9, 10 | ringidcl 19054 | . . . 4 ⊢ (𝑅 ∈ Ring → 1 ∈ (Base‘𝑅)) |
12 | 8, 11 | syl 17 | . . 3 ⊢ (𝜑 → 1 ∈ (Base‘𝑅)) |
13 | mgpsumn.1 | . . 3 ⊢ (𝑘 = 𝐼 → 𝐴 = 1 ) | |
14 | 1, 2, 3, 4, 5, 6, 12, 13 | mgpsumunsn 43803 | . 2 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 )) |
15 | 1, 9 | mgpbas 18981 | . . . 4 ⊢ (Base‘𝑅) = (Base‘𝑀) |
16 | 1 | crngmgp 19041 | . . . . 5 ⊢ (𝑅 ∈ CRing → 𝑀 ∈ CMnd) |
17 | 3, 16 | syl 17 | . . . 4 ⊢ (𝜑 → 𝑀 ∈ CMnd) |
18 | diffi 8544 | . . . . 5 ⊢ (𝑁 ∈ Fin → (𝑁 ∖ {𝐼}) ∈ Fin) | |
19 | 4, 18 | syl 17 | . . . 4 ⊢ (𝜑 → (𝑁 ∖ {𝐼}) ∈ Fin) |
20 | eldifi 3988 | . . . . . 6 ⊢ (𝑘 ∈ (𝑁 ∖ {𝐼}) → 𝑘 ∈ 𝑁) | |
21 | 20, 6 | sylan2 584 | . . . . 5 ⊢ ((𝜑 ∧ 𝑘 ∈ (𝑁 ∖ {𝐼})) → 𝐴 ∈ (Base‘𝑅)) |
22 | 21 | ralrimiva 3127 | . . . 4 ⊢ (𝜑 → ∀𝑘 ∈ (𝑁 ∖ {𝐼})𝐴 ∈ (Base‘𝑅)) |
23 | 15, 17, 19, 22 | gsummptcl 18853 | . . 3 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) |
24 | 9, 2, 10 | ringridm 19058 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) ∈ (Base‘𝑅)) → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 ) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
25 | 8, 23, 24 | syl2anc 576 | . 2 ⊢ (𝜑 → ((𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴)) · 1 ) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
26 | 14, 25 | eqtrd 2809 | 1 ⊢ (𝜑 → (𝑀 Σg (𝑘 ∈ 𝑁 ↦ 𝐴)) = (𝑀 Σg (𝑘 ∈ (𝑁 ∖ {𝐼}) ↦ 𝐴))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 ∖ cdif 3821 {csn 4436 ↦ cmpt 5005 ‘cfv 6186 (class class class)co 6975 Fincfn 8305 Basecbs 16338 .rcmulr 16421 Σg cgsu 16569 CMndccmn 18679 mulGrpcmgp 18975 1rcur 18987 Ringcrg 19033 CRingccrg 19034 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-uni 4710 df-int 4747 df-iun 4791 df-iin 4792 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-of 7226 df-om 7396 df-1st 7500 df-2nd 7501 df-supp 7633 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-fsupp 8628 df-oi 8768 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-n0 11707 df-z 11793 df-uz 12058 df-fz 12708 df-fzo 12849 df-seq 13184 df-hash 13505 df-ndx 16341 df-slot 16342 df-base 16344 df-sets 16345 df-ress 16346 df-plusg 16433 df-0g 16570 df-gsum 16571 df-mre 16728 df-mrc 16729 df-acs 16731 df-mgm 17723 df-sgrp 17765 df-mnd 17776 df-submnd 17817 df-mulg 18025 df-cntz 18231 df-cmn 18681 df-mgp 18976 df-ur 18988 df-ring 19035 df-cring 19036 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |