MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  chp0mat Structured version   Visualization version   GIF version

Theorem chp0mat 21454
Description: The characteristic polynomial of the zero matrix. (Contributed by AV, 18-Aug-2019.)
Hypotheses
Ref Expression
chp0mat.c 𝐶 = (𝑁 CharPlyMat 𝑅)
chp0mat.p 𝑃 = (Poly1𝑅)
chp0mat.a 𝐴 = (𝑁 Mat 𝑅)
chp0mat.x 𝑋 = (var1𝑅)
chp0mat.g 𝐺 = (mulGrp‘𝑃)
chp0mat.m = (.g𝐺)
chp0mat.0 0 = (0g𝐴)
Assertion
Ref Expression
chp0mat ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶0 ) = ((♯‘𝑁) 𝑋))

Proof of Theorem chp0mat
Dummy variables 𝑖 𝑗 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simpl 485 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑁 ∈ Fin)
2 simpr 487 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing)
3 crngring 19308 . . . . 5 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
4 chp0mat.a . . . . . 6 𝐴 = (𝑁 Mat 𝑅)
54matring 21052 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
63, 5sylan2 594 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring)
7 ringgrp 19302 . . . 4 (𝐴 ∈ Ring → 𝐴 ∈ Grp)
8 eqid 2821 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
9 chp0mat.0 . . . . 5 0 = (0g𝐴)
108, 9grpidcl 18131 . . . 4 (𝐴 ∈ Grp → 0 ∈ (Base‘𝐴))
116, 7, 103syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0 ∈ (Base‘𝐴))
12 eqid 2821 . . . . . . . . . 10 (0g𝑅) = (0g𝑅)
134, 12mat0op 21028 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (0g𝐴) = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
149, 13syl5eq 2868 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
153, 14sylan2 594 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0 = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
1615adantr 483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) → 0 = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
17 eqidd 2822 . . . . . 6 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) ∧ (𝑥 = 𝑖𝑦 = 𝑗)) → (0g𝑅) = (0g𝑅))
18 simpl 485 . . . . . . 7 ((𝑖𝑁𝑗𝑁) → 𝑖𝑁)
1918adantl 484 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) → 𝑖𝑁)
20 simpr 487 . . . . . . 7 ((𝑖𝑁𝑗𝑁) → 𝑗𝑁)
2120adantl 484 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) → 𝑗𝑁)
22 fvexd 6685 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) → (0g𝑅) ∈ V)
2316, 17, 19, 21, 22ovmpod 7302 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖 0 𝑗) = (0g𝑅))
2423a1d 25 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖𝑁𝑗𝑁)) → (𝑖𝑗 → (𝑖 0 𝑗) = (0g𝑅)))
2524ralrimivva 3191 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖 0 𝑗) = (0g𝑅)))
26 chp0mat.c . . . 4 𝐶 = (𝑁 CharPlyMat 𝑅)
27 chp0mat.p . . . 4 𝑃 = (Poly1𝑅)
28 eqid 2821 . . . 4 (algSc‘𝑃) = (algSc‘𝑃)
29 chp0mat.x . . . 4 𝑋 = (var1𝑅)
30 chp0mat.g . . . 4 𝐺 = (mulGrp‘𝑃)
31 eqid 2821 . . . 4 (-g𝑃) = (-g𝑃)
3226, 27, 4, 28, 8, 29, 12, 30, 31chpdmat 21449 . . 3 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 0 ∈ (Base‘𝐴)) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖 0 𝑗) = (0g𝑅))) → (𝐶0 ) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))))))
331, 2, 11, 25, 32syl31anc 1369 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶0 ) = (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))))))
3415adantr 483 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → 0 = (𝑥𝑁, 𝑦𝑁 ↦ (0g𝑅)))
35 eqidd 2822 . . . . . . . . 9 ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) ∧ (𝑥 = 𝑘𝑦 = 𝑘)) → (0g𝑅) = (0g𝑅))
36 simpr 487 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → 𝑘𝑁)
37 fvexd 6685 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → (0g𝑅) ∈ V)
3834, 35, 36, 36, 37ovmpod 7302 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → (𝑘 0 𝑘) = (0g𝑅))
3938fveq2d 6674 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → ((algSc‘𝑃)‘(𝑘 0 𝑘)) = ((algSc‘𝑃)‘(0g𝑅)))
403adantl 484 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring)
41 eqid 2821 . . . . . . . . . 10 (0g𝑃) = (0g𝑃)
4227, 28, 12, 41ply1scl0 20458 . . . . . . . . 9 (𝑅 ∈ Ring → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
4340, 42syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
4443adantr 483 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → ((algSc‘𝑃)‘(0g𝑅)) = (0g𝑃))
4539, 44eqtrd 2856 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → ((algSc‘𝑃)‘(𝑘 0 𝑘)) = (0g𝑃))
4645oveq2d 7172 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → (𝑋(-g𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))) = (𝑋(-g𝑃)(0g𝑃)))
4727ply1ring 20416 . . . . . . . . . 10 (𝑅 ∈ Ring → 𝑃 ∈ Ring)
48 ringgrp 19302 . . . . . . . . . 10 (𝑃 ∈ Ring → 𝑃 ∈ Grp)
493, 47, 483syl 18 . . . . . . . . 9 (𝑅 ∈ CRing → 𝑃 ∈ Grp)
5049adantl 484 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Grp)
51 eqid 2821 . . . . . . . . . 10 (Base‘𝑃) = (Base‘𝑃)
5229, 27, 51vr1cl 20385 . . . . . . . . 9 (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃))
5340, 52syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃))
5450, 53jca 514 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃)))
5554adantr 483 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃)))
5651, 41, 31grpsubid1 18184 . . . . . 6 ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(-g𝑃)(0g𝑃)) = 𝑋)
5755, 56syl 17 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → (𝑋(-g𝑃)(0g𝑃)) = 𝑋)
5846, 57eqtrd 2856 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘𝑁) → (𝑋(-g𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))) = 𝑋)
5958mpteq2dva 5161 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑘𝑁 ↦ (𝑋(-g𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘)))) = (𝑘𝑁𝑋))
6059oveq2d 7172 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg (𝑘𝑁 ↦ (𝑋(-g𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))))) = (𝐺 Σg (𝑘𝑁𝑋)))
6127ply1crng 20366 . . . . 5 (𝑅 ∈ CRing → 𝑃 ∈ CRing)
6230crngmgp 19305 . . . . 5 (𝑃 ∈ CRing → 𝐺 ∈ CMnd)
63 cmnmnd 18922 . . . . 5 (𝐺 ∈ CMnd → 𝐺 ∈ Mnd)
6461, 62, 633syl 18 . . . 4 (𝑅 ∈ CRing → 𝐺 ∈ Mnd)
6564adantl 484 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐺 ∈ Mnd)
663, 52syl 17 . . . . 5 (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃))
6766adantl 484 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃))
6830, 51mgpbas 19245 . . . 4 (Base‘𝑃) = (Base‘𝐺)
6967, 68eleqtrdi 2923 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝐺))
70 eqid 2821 . . . 4 (Base‘𝐺) = (Base‘𝐺)
71 chp0mat.m . . . 4 = (.g𝐺)
7270, 71gsumconst 19054 . . 3 ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘𝑁𝑋)) = ((♯‘𝑁) 𝑋))
7365, 1, 69, 72syl3anc 1367 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg (𝑘𝑁𝑋)) = ((♯‘𝑁) 𝑋))
7433, 60, 733eqtrd 2860 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶0 ) = ((♯‘𝑁) 𝑋))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398   = wceq 1537  wcel 2114  wne 3016  wral 3138  Vcvv 3494  cmpt 5146  cfv 6355  (class class class)co 7156  cmpo 7158  Fincfn 8509  chash 13691  Basecbs 16483  0gc0g 16713   Σg cgsu 16714  Mndcmnd 17911  Grpcgrp 18103  -gcsg 18105  .gcmg 18224  CMndccmn 18906  mulGrpcmgp 19239  Ringcrg 19297  CRingccrg 19298  algSccascl 20084  var1cv1 20344  Poly1cpl1 20345   Mat cmat 21016   CharPlyMat cchpmat 21434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461  ax-cnex 10593  ax-resscn 10594  ax-1cn 10595  ax-icn 10596  ax-addcl 10597  ax-addrcl 10598  ax-mulcl 10599  ax-mulrcl 10600  ax-mulcom 10601  ax-addass 10602  ax-mulass 10603  ax-distr 10604  ax-i2m1 10605  ax-1ne0 10606  ax-1rid 10607  ax-rnegex 10608  ax-rrecex 10609  ax-cnre 10610  ax-pre-lttri 10611  ax-pre-lttrn 10612  ax-pre-ltadd 10613  ax-pre-mulgt0 10614  ax-addf 10616  ax-mulf 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-xor 1502  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-ot 4576  df-uni 4839  df-int 4877  df-iun 4921  df-iin 4922  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-se 5515  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-pred 6148  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-isom 6364  df-riota 7114  df-ov 7159  df-oprab 7160  df-mpo 7161  df-of 7409  df-ofr 7410  df-om 7581  df-1st 7689  df-2nd 7690  df-supp 7831  df-tpos 7892  df-wrecs 7947  df-recs 8008  df-rdg 8046  df-1o 8102  df-2o 8103  df-oadd 8106  df-er 8289  df-map 8408  df-pm 8409  df-ixp 8462  df-en 8510  df-dom 8511  df-sdom 8512  df-fin 8513  df-fsupp 8834  df-sup 8906  df-oi 8974  df-card 9368  df-pnf 10677  df-mnf 10678  df-xr 10679  df-ltxr 10680  df-le 10681  df-sub 10872  df-neg 10873  df-div 11298  df-nn 11639  df-2 11701  df-3 11702  df-4 11703  df-5 11704  df-6 11705  df-7 11706  df-8 11707  df-9 11708  df-n0 11899  df-xnn0 11969  df-z 11983  df-dec 12100  df-uz 12245  df-rp 12391  df-fz 12894  df-fzo 13035  df-seq 13371  df-exp 13431  df-hash 13692  df-word 13863  df-lsw 13915  df-concat 13923  df-s1 13950  df-substr 14003  df-pfx 14033  df-splice 14112  df-reverse 14121  df-s2 14210  df-struct 16485  df-ndx 16486  df-slot 16487  df-base 16489  df-sets 16490  df-ress 16491  df-plusg 16578  df-mulr 16579  df-starv 16580  df-sca 16581  df-vsca 16582  df-ip 16583  df-tset 16584  df-ple 16585  df-ds 16587  df-unif 16588  df-hom 16589  df-cco 16590  df-0g 16715  df-gsum 16716  df-prds 16721  df-pws 16723  df-mre 16857  df-mrc 16858  df-acs 16860  df-mgm 17852  df-sgrp 17901  df-mnd 17912  df-mhm 17956  df-submnd 17957  df-efmnd 18034  df-grp 18106  df-minusg 18107  df-sbg 18108  df-mulg 18225  df-subg 18276  df-ghm 18356  df-gim 18399  df-cntz 18447  df-oppg 18474  df-symg 18496  df-pmtr 18570  df-psgn 18619  df-cmn 18908  df-abl 18909  df-mgp 19240  df-ur 19252  df-ring 19299  df-cring 19300  df-oppr 19373  df-dvdsr 19391  df-unit 19392  df-invr 19422  df-dvr 19433  df-rnghom 19467  df-drng 19504  df-subrg 19533  df-lmod 19636  df-lss 19704  df-sra 19944  df-rgmod 19945  df-ascl 20087  df-psr 20136  df-mvr 20137  df-mpl 20138  df-opsr 20140  df-psr1 20348  df-vr1 20349  df-ply1 20350  df-cnfld 20546  df-zring 20618  df-zrh 20651  df-dsmm 20876  df-frlm 20891  df-mamu 20995  df-mat 21017  df-mdet 21194  df-mat2pmat 21315  df-chpmat 21435
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator