Step | Hyp | Ref
| Expression |
1 | | simpl 484 |
. . 3
β’ ((π β Fin β§ π
β CRing) β π β Fin) |
2 | | simpr 486 |
. . 3
β’ ((π β Fin β§ π
β CRing) β π
β CRing) |
3 | | crngring 19984 |
. . . . 5
β’ (π
β CRing β π
β Ring) |
4 | | chp0mat.a |
. . . . . 6
β’ π΄ = (π Mat π
) |
5 | 4 | matring 21815 |
. . . . 5
β’ ((π β Fin β§ π
β Ring) β π΄ β Ring) |
6 | 3, 5 | sylan2 594 |
. . . 4
β’ ((π β Fin β§ π
β CRing) β π΄ β Ring) |
7 | | ringgrp 19977 |
. . . 4
β’ (π΄ β Ring β π΄ β Grp) |
8 | | eqid 2733 |
. . . . 5
β’
(Baseβπ΄) =
(Baseβπ΄) |
9 | | chp0mat.0 |
. . . . 5
β’ 0 =
(0gβπ΄) |
10 | 8, 9 | grpidcl 18786 |
. . . 4
β’ (π΄ β Grp β 0 β
(Baseβπ΄)) |
11 | 6, 7, 10 | 3syl 18 |
. . 3
β’ ((π β Fin β§ π
β CRing) β 0 β
(Baseβπ΄)) |
12 | | eqid 2733 |
. . . . . . . . . 10
β’
(0gβπ
) = (0gβπ
) |
13 | 4, 12 | mat0op 21791 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β Ring) β
(0gβπ΄) =
(π₯ β π, π¦ β π β¦ (0gβπ
))) |
14 | 9, 13 | eqtrid 2785 |
. . . . . . . 8
β’ ((π β Fin β§ π
β Ring) β 0 = (π₯ β π, π¦ β π β¦ (0gβπ
))) |
15 | 3, 14 | sylan2 594 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing) β 0 = (π₯ β π, π¦ β π β¦ (0gβπ
))) |
16 | 15 | adantr 482 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β 0 = (π₯ β π, π¦ β π β¦ (0gβπ
))) |
17 | | eqidd 2734 |
. . . . . 6
β’ ((((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β§ (π₯ = π β§ π¦ = π)) β (0gβπ
) = (0gβπ
)) |
18 | | simpl 484 |
. . . . . . 7
β’ ((π β π β§ π β π) β π β π) |
19 | 18 | adantl 483 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β π β π) |
20 | | simpr 486 |
. . . . . . 7
β’ ((π β π β§ π β π) β π β π) |
21 | 20 | adantl 483 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β π β π) |
22 | | fvexd 6861 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β (0gβπ
) β V) |
23 | 16, 17, 19, 21, 22 | ovmpod 7511 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β (π 0 π) = (0gβπ
)) |
24 | 23 | a1d 25 |
. . . 4
β’ (((π β Fin β§ π
β CRing) β§ (π β π β§ π β π)) β (π β π β (π 0 π) = (0gβπ
))) |
25 | 24 | ralrimivva 3194 |
. . 3
β’ ((π β Fin β§ π
β CRing) β
βπ β π βπ β π (π β π β (π 0 π) = (0gβπ
))) |
26 | | chp0mat.c |
. . . 4
β’ πΆ = (π CharPlyMat π
) |
27 | | chp0mat.p |
. . . 4
β’ π = (Poly1βπ
) |
28 | | eqid 2733 |
. . . 4
β’
(algScβπ) =
(algScβπ) |
29 | | chp0mat.x |
. . . 4
β’ π = (var1βπ
) |
30 | | chp0mat.g |
. . . 4
β’ πΊ = (mulGrpβπ) |
31 | | eqid 2733 |
. . . 4
β’
(-gβπ) = (-gβπ) |
32 | 26, 27, 4, 28, 8, 29, 12, 30, 31 | chpdmat 22213 |
. . 3
β’ (((π β Fin β§ π
β CRing β§ 0 β
(Baseβπ΄)) β§
βπ β π βπ β π (π β π β (π 0 π) = (0gβπ
))) β (πΆβ 0 ) = (πΊ Ξ£g (π β π β¦ (π(-gβπ)((algScβπ)β(π 0 π)))))) |
33 | 1, 2, 11, 25, 32 | syl31anc 1374 |
. 2
β’ ((π β Fin β§ π
β CRing) β (πΆβ 0 ) = (πΊ Ξ£g (π β π β¦ (π(-gβπ)((algScβπ)β(π 0 π)))))) |
34 | 15 | adantr 482 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing) β§ π β π) β 0 = (π₯ β π, π¦ β π β¦ (0gβπ
))) |
35 | | eqidd 2734 |
. . . . . . . . 9
β’ ((((π β Fin β§ π
β CRing) β§ π β π) β§ (π₯ = π β§ π¦ = π)) β (0gβπ
) = (0gβπ
)) |
36 | | simpr 486 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing) β§ π β π) β π β π) |
37 | | fvexd 6861 |
. . . . . . . . 9
β’ (((π β Fin β§ π
β CRing) β§ π β π) β (0gβπ
) β V) |
38 | 34, 35, 36, 36, 37 | ovmpod 7511 |
. . . . . . . 8
β’ (((π β Fin β§ π
β CRing) β§ π β π) β (π 0 π) = (0gβπ
)) |
39 | 38 | fveq2d 6850 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing) β§ π β π) β ((algScβπ)β(π 0 π)) = ((algScβπ)β(0gβπ
))) |
40 | 3 | adantl 483 |
. . . . . . . . 9
β’ ((π β Fin β§ π
β CRing) β π
β Ring) |
41 | | eqid 2733 |
. . . . . . . . . 10
β’
(0gβπ) = (0gβπ) |
42 | 27, 28, 12, 41 | ply1scl0 21684 |
. . . . . . . . 9
β’ (π
β Ring β
((algScβπ)β(0gβπ
)) = (0gβπ)) |
43 | 40, 42 | syl 17 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β
((algScβπ)β(0gβπ
)) = (0gβπ)) |
44 | 43 | adantr 482 |
. . . . . . 7
β’ (((π β Fin β§ π
β CRing) β§ π β π) β ((algScβπ)β(0gβπ
)) = (0gβπ)) |
45 | 39, 44 | eqtrd 2773 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ π β π) β ((algScβπ)β(π 0 π)) = (0gβπ)) |
46 | 45 | oveq2d 7377 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ π β π) β (π(-gβπ)((algScβπ)β(π 0 π))) = (π(-gβπ)(0gβπ))) |
47 | 27 | ply1ring 21642 |
. . . . . . . . . 10
β’ (π
β Ring β π β Ring) |
48 | | ringgrp 19977 |
. . . . . . . . . 10
β’ (π β Ring β π β Grp) |
49 | 3, 47, 48 | 3syl 18 |
. . . . . . . . 9
β’ (π
β CRing β π β Grp) |
50 | 49 | adantl 483 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β π β Grp) |
51 | | eqid 2733 |
. . . . . . . . . 10
β’
(Baseβπ) =
(Baseβπ) |
52 | 29, 27, 51 | vr1cl 21611 |
. . . . . . . . 9
β’ (π
β Ring β π β (Baseβπ)) |
53 | 40, 52 | syl 17 |
. . . . . . . 8
β’ ((π β Fin β§ π
β CRing) β π β (Baseβπ)) |
54 | 50, 53 | jca 513 |
. . . . . . 7
β’ ((π β Fin β§ π
β CRing) β (π β Grp β§ π β (Baseβπ))) |
55 | 54 | adantr 482 |
. . . . . 6
β’ (((π β Fin β§ π
β CRing) β§ π β π) β (π β Grp β§ π β (Baseβπ))) |
56 | 51, 41, 31 | grpsubid1 18840 |
. . . . . 6
β’ ((π β Grp β§ π β (Baseβπ)) β (π(-gβπ)(0gβπ)) = π) |
57 | 55, 56 | syl 17 |
. . . . 5
β’ (((π β Fin β§ π
β CRing) β§ π β π) β (π(-gβπ)(0gβπ)) = π) |
58 | 46, 57 | eqtrd 2773 |
. . . 4
β’ (((π β Fin β§ π
β CRing) β§ π β π) β (π(-gβπ)((algScβπ)β(π 0 π))) = π) |
59 | 58 | mpteq2dva 5209 |
. . 3
β’ ((π β Fin β§ π
β CRing) β (π β π β¦ (π(-gβπ)((algScβπ)β(π 0 π)))) = (π β π β¦ π)) |
60 | 59 | oveq2d 7377 |
. 2
β’ ((π β Fin β§ π
β CRing) β (πΊ Ξ£g
(π β π β¦ (π(-gβπ)((algScβπ)β(π 0 π))))) = (πΊ Ξ£g (π β π β¦ π))) |
61 | 27 | ply1crng 21592 |
. . . . 5
β’ (π
β CRing β π β CRing) |
62 | 30 | crngmgp 19980 |
. . . . 5
β’ (π β CRing β πΊ β CMnd) |
63 | | cmnmnd 19587 |
. . . . 5
β’ (πΊ β CMnd β πΊ β Mnd) |
64 | 61, 62, 63 | 3syl 18 |
. . . 4
β’ (π
β CRing β πΊ β Mnd) |
65 | 64 | adantl 483 |
. . 3
β’ ((π β Fin β§ π
β CRing) β πΊ β Mnd) |
66 | 3, 52 | syl 17 |
. . . . 5
β’ (π
β CRing β π β (Baseβπ)) |
67 | 66 | adantl 483 |
. . . 4
β’ ((π β Fin β§ π
β CRing) β π β (Baseβπ)) |
68 | 30, 51 | mgpbas 19910 |
. . . 4
β’
(Baseβπ) =
(BaseβπΊ) |
69 | 67, 68 | eleqtrdi 2844 |
. . 3
β’ ((π β Fin β§ π
β CRing) β π β (BaseβπΊ)) |
70 | | eqid 2733 |
. . . 4
β’
(BaseβπΊ) =
(BaseβπΊ) |
71 | | chp0mat.m |
. . . 4
β’ β =
(.gβπΊ) |
72 | 70, 71 | gsumconst 19719 |
. . 3
β’ ((πΊ β Mnd β§ π β Fin β§ π β (BaseβπΊ)) β (πΊ Ξ£g (π β π β¦ π)) = ((β―βπ) β π)) |
73 | 65, 1, 69, 72 | syl3anc 1372 |
. 2
β’ ((π β Fin β§ π
β CRing) β (πΊ Ξ£g
(π β π β¦ π)) = ((β―βπ) β π)) |
74 | 33, 60, 73 | 3eqtrd 2777 |
1
β’ ((π β Fin β§ π
β CRing) β (πΆβ 0 ) = ((β―βπ) β π)) |