| Step | Hyp | Ref
| Expression |
| 1 | | simpl 482 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑁 ∈ Fin) |
| 2 | | simpr 484 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ CRing) |
| 3 | | crngring 20242 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
| 4 | | chp0mat.a |
. . . . . 6
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 5 | 4 | matring 22449 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 6 | 3, 5 | sylan2 593 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐴 ∈ Ring) |
| 7 | | ringgrp 20235 |
. . . 4
⊢ (𝐴 ∈ Ring → 𝐴 ∈ Grp) |
| 8 | | eqid 2737 |
. . . . 5
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 9 | | chp0mat.0 |
. . . . 5
⊢ 0 =
(0g‘𝐴) |
| 10 | 8, 9 | grpidcl 18983 |
. . . 4
⊢ (𝐴 ∈ Grp → 0 ∈
(Base‘𝐴)) |
| 11 | 6, 7, 10 | 3syl 18 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0 ∈
(Base‘𝐴)) |
| 12 | | eqid 2737 |
. . . . . . . . . 10
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 13 | 4, 12 | mat0op 22425 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(0g‘𝐴) =
(𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 14 | 9, 13 | eqtrid 2789 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 0 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 15 | 3, 14 | sylan2 593 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 0 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 16 | 15 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 0 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 17 | | eqidd 2738 |
. . . . . 6
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) ∧ (𝑥 = 𝑖 ∧ 𝑦 = 𝑗)) → (0g‘𝑅) = (0g‘𝑅)) |
| 18 | | simpl 482 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑖 ∈ 𝑁) |
| 19 | 18 | adantl 481 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑖 ∈ 𝑁) |
| 20 | | simpr 484 |
. . . . . . 7
⊢ ((𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁) → 𝑗 ∈ 𝑁) |
| 21 | 20 | adantl 481 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → 𝑗 ∈ 𝑁) |
| 22 | | fvexd 6921 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (0g‘𝑅) ∈ V) |
| 23 | 16, 17, 19, 21, 22 | ovmpod 7585 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 0 𝑗) = (0g‘𝑅)) |
| 24 | 23 | a1d 25 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ (𝑖 ∈ 𝑁 ∧ 𝑗 ∈ 𝑁)) → (𝑖 ≠ 𝑗 → (𝑖 0 𝑗) = (0g‘𝑅))) |
| 25 | 24 | ralrimivva 3202 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖 0 𝑗) = (0g‘𝑅))) |
| 26 | | chp0mat.c |
. . . 4
⊢ 𝐶 = (𝑁 CharPlyMat 𝑅) |
| 27 | | chp0mat.p |
. . . 4
⊢ 𝑃 = (Poly1‘𝑅) |
| 28 | | eqid 2737 |
. . . 4
⊢
(algSc‘𝑃) =
(algSc‘𝑃) |
| 29 | | chp0mat.x |
. . . 4
⊢ 𝑋 = (var1‘𝑅) |
| 30 | | chp0mat.g |
. . . 4
⊢ 𝐺 = (mulGrp‘𝑃) |
| 31 | | eqid 2737 |
. . . 4
⊢
(-g‘𝑃) = (-g‘𝑃) |
| 32 | 26, 27, 4, 28, 8, 29, 12, 30, 31 | chpdmat 22847 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ∧ 0 ∈
(Base‘𝐴)) ∧
∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖 0 𝑗) = (0g‘𝑅))) → (𝐶‘ 0 ) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘)))))) |
| 33 | 1, 2, 11, 25, 32 | syl31anc 1375 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘ 0 ) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘)))))) |
| 34 | 15 | adantr 480 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → 0 = (𝑥 ∈ 𝑁, 𝑦 ∈ 𝑁 ↦ (0g‘𝑅))) |
| 35 | | eqidd 2738 |
. . . . . . . . 9
⊢ ((((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) ∧ (𝑥 = 𝑘 ∧ 𝑦 = 𝑘)) → (0g‘𝑅) = (0g‘𝑅)) |
| 36 | | simpr 484 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
| 37 | | fvexd 6921 |
. . . . . . . . 9
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (0g‘𝑅) ∈ V) |
| 38 | 34, 35, 36, 36, 37 | ovmpod 7585 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑘 0 𝑘) = (0g‘𝑅)) |
| 39 | 38 | fveq2d 6910 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑘 0 𝑘)) = ((algSc‘𝑃)‘(0g‘𝑅))) |
| 40 | 3 | adantl 481 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑅 ∈ Ring) |
| 41 | | eqid 2737 |
. . . . . . . . . 10
⊢
(0g‘𝑃) = (0g‘𝑃) |
| 42 | 27, 28, 12, 41 | ply1scl0 22293 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring →
((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
| 43 | 40, 42 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) →
((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
| 44 | 43 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → ((algSc‘𝑃)‘(0g‘𝑅)) = (0g‘𝑃)) |
| 45 | 39, 44 | eqtrd 2777 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → ((algSc‘𝑃)‘(𝑘 0 𝑘)) = (0g‘𝑃)) |
| 46 | 45 | oveq2d 7447 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))) = (𝑋(-g‘𝑃)(0g‘𝑃))) |
| 47 | 27 | ply1ring 22249 |
. . . . . . . . . 10
⊢ (𝑅 ∈ Ring → 𝑃 ∈ Ring) |
| 48 | | ringgrp 20235 |
. . . . . . . . . 10
⊢ (𝑃 ∈ Ring → 𝑃 ∈ Grp) |
| 49 | 3, 47, 48 | 3syl 18 |
. . . . . . . . 9
⊢ (𝑅 ∈ CRing → 𝑃 ∈ Grp) |
| 50 | 49 | adantl 481 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑃 ∈ Grp) |
| 51 | | eqid 2737 |
. . . . . . . . . 10
⊢
(Base‘𝑃) =
(Base‘𝑃) |
| 52 | 29, 27, 51 | vr1cl 22219 |
. . . . . . . . 9
⊢ (𝑅 ∈ Ring → 𝑋 ∈ (Base‘𝑃)) |
| 53 | 40, 52 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃)) |
| 54 | 50, 53 | jca 511 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃))) |
| 55 | 54 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃))) |
| 56 | 51, 41, 31 | grpsubid1 19043 |
. . . . . 6
⊢ ((𝑃 ∈ Grp ∧ 𝑋 ∈ (Base‘𝑃)) → (𝑋(-g‘𝑃)(0g‘𝑃)) = 𝑋) |
| 57 | 55, 56 | syl 17 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑋(-g‘𝑃)(0g‘𝑃)) = 𝑋) |
| 58 | 46, 57 | eqtrd 2777 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) ∧ 𝑘 ∈ 𝑁) → (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))) = 𝑋) |
| 59 | 58 | mpteq2dva 5242 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘)))) = (𝑘 ∈ 𝑁 ↦ 𝑋)) |
| 60 | 59 | oveq2d 7447 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑋(-g‘𝑃)((algSc‘𝑃)‘(𝑘 0 𝑘))))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ 𝑋))) |
| 61 | 27 | ply1crng 22200 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑃 ∈ CRing) |
| 62 | 30 | crngmgp 20238 |
. . . . 5
⊢ (𝑃 ∈ CRing → 𝐺 ∈ CMnd) |
| 63 | | cmnmnd 19815 |
. . . . 5
⊢ (𝐺 ∈ CMnd → 𝐺 ∈ Mnd) |
| 64 | 61, 62, 63 | 3syl 18 |
. . . 4
⊢ (𝑅 ∈ CRing → 𝐺 ∈ Mnd) |
| 65 | 64 | adantl 481 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝐺 ∈ Mnd) |
| 66 | 3, 52 | syl 17 |
. . . . 5
⊢ (𝑅 ∈ CRing → 𝑋 ∈ (Base‘𝑃)) |
| 67 | 66 | adantl 481 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝑃)) |
| 68 | 30, 51 | mgpbas 20142 |
. . . 4
⊢
(Base‘𝑃) =
(Base‘𝐺) |
| 69 | 67, 68 | eleqtrdi 2851 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → 𝑋 ∈ (Base‘𝐺)) |
| 70 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐺) =
(Base‘𝐺) |
| 71 | | chp0mat.m |
. . . 4
⊢ ↑ =
(.g‘𝐺) |
| 72 | 70, 71 | gsumconst 19952 |
. . 3
⊢ ((𝐺 ∈ Mnd ∧ 𝑁 ∈ Fin ∧ 𝑋 ∈ (Base‘𝐺)) → (𝐺 Σg (𝑘 ∈ 𝑁 ↦ 𝑋)) = ((♯‘𝑁) ↑ 𝑋)) |
| 73 | 65, 1, 69, 72 | syl3anc 1373 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ 𝑋)) = ((♯‘𝑁) ↑ 𝑋)) |
| 74 | 33, 60, 73 | 3eqtrd 2781 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ CRing) → (𝐶‘ 0 ) = ((♯‘𝑁) ↑ 𝑋)) |