Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > matgsumcl | Structured version Visualization version GIF version |
Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.) |
Ref | Expression |
---|---|
madetsumid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
madetsumid.b | ⊢ 𝐵 = (Base‘𝐴) |
madetsumid.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
matgsumcl | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madetsumid.u | . . 3 ⊢ 𝑈 = (mulGrp‘𝑅) | |
2 | eqid 2736 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | mgpbas 19821 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑈) |
4 | 1 | crngmgp 19886 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑈 ∈ CMnd) |
5 | 4 | adantr 481 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑈 ∈ CMnd) |
6 | madetsumid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
7 | madetsumid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
8 | 6, 7 | matrcl 21665 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
9 | 8 | adantl 482 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
10 | 9 | simpld 495 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
11 | simpr 485 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
12 | 6, 2, 7 | matbas2i 21677 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
13 | elmapi 8708 | . . . . . 6 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
15 | 14 | adantr 481 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
16 | simpr 485 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → 𝑟 ∈ 𝑁) | |
17 | 15, 16, 16 | fovcdmd 7506 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → (𝑟𝑀𝑟) ∈ (Base‘𝑅)) |
18 | 17 | ralrimiva 3139 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∀𝑟 ∈ 𝑁 (𝑟𝑀𝑟) ∈ (Base‘𝑅)) |
19 | 3, 5, 10, 18 | gsummptcl 19663 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1540 ∈ wcel 2105 Vcvv 3441 ↦ cmpt 5175 × cxp 5618 ⟶wf 6475 ‘cfv 6479 (class class class)co 7337 ↑m cmap 8686 Fincfn 8804 Basecbs 17009 Σg cgsu 17248 CMndccmn 19481 mulGrpcmgp 19815 CRingccrg 19879 Mat cmat 21660 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5229 ax-sep 5243 ax-nul 5250 ax-pow 5308 ax-pr 5372 ax-un 7650 ax-cnex 11028 ax-resscn 11029 ax-1cn 11030 ax-icn 11031 ax-addcl 11032 ax-addrcl 11033 ax-mulcl 11034 ax-mulrcl 11035 ax-mulcom 11036 ax-addass 11037 ax-mulass 11038 ax-distr 11039 ax-i2m1 11040 ax-1ne0 11041 ax-1rid 11042 ax-rnegex 11043 ax-rrecex 11044 ax-cnre 11045 ax-pre-lttri 11046 ax-pre-lttrn 11047 ax-pre-ltadd 11048 ax-pre-mulgt0 11049 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3349 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3728 df-csb 3844 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3917 df-nul 4270 df-if 4474 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4853 df-int 4895 df-iun 4943 df-br 5093 df-opab 5155 df-mpt 5176 df-tr 5210 df-id 5518 df-eprel 5524 df-po 5532 df-so 5533 df-fr 5575 df-se 5576 df-we 5577 df-xp 5626 df-rel 5627 df-cnv 5628 df-co 5629 df-dm 5630 df-rn 5631 df-res 5632 df-ima 5633 df-pred 6238 df-ord 6305 df-on 6306 df-lim 6307 df-suc 6308 df-iota 6431 df-fun 6481 df-fn 6482 df-f 6483 df-f1 6484 df-fo 6485 df-f1o 6486 df-fv 6487 df-isom 6488 df-riota 7293 df-ov 7340 df-oprab 7341 df-mpo 7342 df-om 7781 df-1st 7899 df-2nd 7900 df-supp 8048 df-frecs 8167 df-wrecs 8198 df-recs 8272 df-rdg 8311 df-1o 8367 df-er 8569 df-map 8688 df-ixp 8757 df-en 8805 df-dom 8806 df-sdom 8807 df-fin 8808 df-fsupp 9227 df-sup 9299 df-oi 9367 df-card 9796 df-pnf 11112 df-mnf 11113 df-xr 11114 df-ltxr 11115 df-le 11116 df-sub 11308 df-neg 11309 df-nn 12075 df-2 12137 df-3 12138 df-4 12139 df-5 12140 df-6 12141 df-7 12142 df-8 12143 df-9 12144 df-n0 12335 df-z 12421 df-dec 12539 df-uz 12684 df-fz 13341 df-fzo 13484 df-seq 13823 df-hash 14146 df-struct 16945 df-sets 16962 df-slot 16980 df-ndx 16992 df-base 17010 df-ress 17039 df-plusg 17072 df-mulr 17073 df-sca 17075 df-vsca 17076 df-ip 17077 df-tset 17078 df-ple 17079 df-ds 17081 df-hom 17083 df-cco 17084 df-0g 17249 df-gsum 17250 df-prds 17255 df-pws 17257 df-mgm 18423 df-sgrp 18472 df-mnd 18483 df-cntz 19019 df-cmn 19483 df-mgp 19816 df-cring 19881 df-sra 20540 df-rgmod 20541 df-dsmm 21045 df-frlm 21060 df-mat 21661 |
This theorem is referenced by: madetsumid 21716 |
Copyright terms: Public domain | W3C validator |