| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matgsumcl | Structured version Visualization version GIF version | ||
| Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| madetsumid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| madetsumid.b | ⊢ 𝐵 = (Base‘𝐴) |
| madetsumid.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| matgsumcl | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madetsumid.u | . . 3 ⊢ 𝑈 = (mulGrp‘𝑅) | |
| 2 | eqid 2731 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | mgpbas 20069 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑈) |
| 4 | 1 | crngmgp 20165 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑈 ∈ CMnd) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑈 ∈ CMnd) |
| 6 | madetsumid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 7 | madetsumid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 8 | 6, 7 | matrcl 22333 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 10 | 9 | simpld 494 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 12 | 6, 2, 7 | matbas2i 22343 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 13 | elmapi 8779 | . . . . . 6 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
| 14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
| 16 | simpr 484 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → 𝑟 ∈ 𝑁) | |
| 17 | 15, 16, 16 | fovcdmd 7524 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → (𝑟𝑀𝑟) ∈ (Base‘𝑅)) |
| 18 | 17 | ralrimiva 3124 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∀𝑟 ∈ 𝑁 (𝑟𝑀𝑟) ∈ (Base‘𝑅)) |
| 19 | 3, 5, 10, 18 | gsummptcl 19885 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ↦ cmpt 5174 × cxp 5617 ⟶wf 6483 ‘cfv 6487 (class class class)co 7352 ↑m cmap 8756 Fincfn 8875 Basecbs 17126 Σg cgsu 17350 CMndccmn 19698 mulGrpcmgp 20064 CRingccrg 20158 Mat cmat 22328 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11068 ax-resscn 11069 ax-1cn 11070 ax-icn 11071 ax-addcl 11072 ax-addrcl 11073 ax-mulcl 11074 ax-mulrcl 11075 ax-mulcom 11076 ax-addass 11077 ax-mulass 11078 ax-distr 11079 ax-i2m1 11080 ax-1ne0 11081 ax-1rid 11082 ax-rnegex 11083 ax-rrecex 11084 ax-cnre 11085 ax-pre-lttri 11086 ax-pre-lttrn 11087 ax-pre-ltadd 11088 ax-pre-mulgt0 11089 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-tp 4580 df-op 4582 df-ot 4584 df-uni 4859 df-int 4898 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-se 5573 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6254 df-ord 6315 df-on 6316 df-lim 6317 df-suc 6318 df-iota 6443 df-fun 6489 df-fn 6490 df-f 6491 df-f1 6492 df-fo 6493 df-f1o 6494 df-fv 6495 df-isom 6496 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-supp 8097 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-1o 8391 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-fin 8879 df-fsupp 9252 df-sup 9332 df-oi 9402 df-card 9838 df-pnf 11154 df-mnf 11155 df-xr 11156 df-ltxr 11157 df-le 11158 df-sub 11352 df-neg 11353 df-nn 12132 df-2 12194 df-3 12195 df-4 12196 df-5 12197 df-6 12198 df-7 12199 df-8 12200 df-9 12201 df-n0 12388 df-z 12475 df-dec 12595 df-uz 12739 df-fz 13414 df-fzo 13561 df-seq 13915 df-hash 14244 df-struct 17064 df-sets 17081 df-slot 17099 df-ndx 17111 df-base 17127 df-ress 17148 df-plusg 17180 df-mulr 17181 df-sca 17183 df-vsca 17184 df-ip 17185 df-tset 17186 df-ple 17187 df-ds 17189 df-hom 17191 df-cco 17192 df-0g 17351 df-gsum 17352 df-prds 17357 df-pws 17359 df-mgm 18554 df-sgrp 18633 df-mnd 18649 df-cntz 19235 df-cmn 19700 df-mgp 20065 df-cring 20160 df-sra 21113 df-rgmod 21114 df-dsmm 21675 df-frlm 21690 df-mat 22329 |
| This theorem is referenced by: madetsumid 22382 |
| Copyright terms: Public domain | W3C validator |