MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matgsumcl Structured version   Visualization version   GIF version

Theorem matgsumcl 22398
Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
madetsumid.a 𝐴 = (𝑁 Mat 𝑅)
madetsumid.b 𝐵 = (Base‘𝐴)
madetsumid.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
matgsumcl ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈 Σg (𝑟𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅))
Distinct variable groups:   𝐵,𝑟   𝑀,𝑟   𝑁,𝑟   𝑅,𝑟
Allowed substitution hints:   𝐴(𝑟)   𝑈(𝑟)

Proof of Theorem matgsumcl
StepHypRef Expression
1 madetsumid.u . . 3 𝑈 = (mulGrp‘𝑅)
2 eqid 2735 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 20105 . 2 (Base‘𝑅) = (Base‘𝑈)
41crngmgp 20201 . . 3 (𝑅 ∈ CRing → 𝑈 ∈ CMnd)
54adantr 480 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑈 ∈ CMnd)
6 madetsumid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
7 madetsumid.b . . . . 5 𝐵 = (Base‘𝐴)
86, 7matrcl 22350 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98adantl 481 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
109simpld 494 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
11 simpr 484 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
126, 2, 7matbas2i 22360 . . . . . 6 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
13 elmapi 8863 . . . . . 6 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
1411, 12, 133syl 18 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
1514adantr 480 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
16 simpr 484 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → 𝑟𝑁)
1715, 16, 16fovcdmd 7579 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → (𝑟𝑀𝑟) ∈ (Base‘𝑅))
1817ralrimiva 3132 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑟𝑁 (𝑟𝑀𝑟) ∈ (Base‘𝑅))
193, 5, 10, 18gsummptcl 19948 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈 Σg (𝑟𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  Vcvv 3459  cmpt 5201   × cxp 5652  wf 6527  cfv 6531  (class class class)co 7405  m cmap 8840  Fincfn 8959  Basecbs 17228   Σg cgsu 17454  CMndccmn 19761  mulGrpcmgp 20100  CRingccrg 20194   Mat cmat 22345
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-ot 4610  df-uni 4884  df-int 4923  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-er 8719  df-map 8842  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-cntz 19300  df-cmn 19763  df-mgp 20101  df-cring 20196  df-sra 21131  df-rgmod 21132  df-dsmm 21692  df-frlm 21707  df-mat 22346
This theorem is referenced by:  madetsumid  22399
  Copyright terms: Public domain W3C validator