![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > matgsumcl | Structured version Visualization version GIF version |
Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.) |
Ref | Expression |
---|---|
madetsumid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
madetsumid.b | ⊢ 𝐵 = (Base‘𝐴) |
madetsumid.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
Ref | Expression |
---|---|
matgsumcl | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | madetsumid.u | . . 3 ⊢ 𝑈 = (mulGrp‘𝑅) | |
2 | eqid 2773 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
3 | 1, 2 | mgpbas 18981 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑈) |
4 | 1 | crngmgp 19041 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑈 ∈ CMnd) |
5 | 4 | adantr 473 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑈 ∈ CMnd) |
6 | madetsumid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
7 | madetsumid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
8 | 6, 7 | matrcl 20741 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
9 | 8 | adantl 474 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
10 | 9 | simpld 487 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
11 | simpr 477 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
12 | 6, 2, 7 | matbas2i 20751 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁))) |
13 | elmapi 8227 | . . . . . 6 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
15 | 14 | adantr 473 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
16 | simpr 477 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → 𝑟 ∈ 𝑁) | |
17 | 15, 16, 16 | fovrnd 7135 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → (𝑟𝑀𝑟) ∈ (Base‘𝑅)) |
18 | 17 | ralrimiva 3127 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∀𝑟 ∈ 𝑁 (𝑟𝑀𝑟) ∈ (Base‘𝑅)) |
19 | 3, 5, 10, 18 | gsummptcl 18853 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1508 ∈ wcel 2051 Vcvv 3410 ↦ cmpt 5005 × cxp 5402 ⟶wf 6182 ‘cfv 6186 (class class class)co 6975 ↑𝑚 cmap 8205 Fincfn 8305 Basecbs 16338 Σg cgsu 16569 CMndccmn 18679 mulGrpcmgp 18975 CRingccrg 19034 Mat cmat 20736 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1759 ax-4 1773 ax-5 1870 ax-6 1929 ax-7 1966 ax-8 2053 ax-9 2060 ax-10 2080 ax-11 2094 ax-12 2107 ax-13 2302 ax-ext 2745 ax-rep 5046 ax-sep 5057 ax-nul 5064 ax-pow 5116 ax-pr 5183 ax-un 7278 ax-cnex 10390 ax-resscn 10391 ax-1cn 10392 ax-icn 10393 ax-addcl 10394 ax-addrcl 10395 ax-mulcl 10396 ax-mulrcl 10397 ax-mulcom 10398 ax-addass 10399 ax-mulass 10400 ax-distr 10401 ax-i2m1 10402 ax-1ne0 10403 ax-1rid 10404 ax-rnegex 10405 ax-rrecex 10406 ax-cnre 10407 ax-pre-lttri 10408 ax-pre-lttrn 10409 ax-pre-ltadd 10410 ax-pre-mulgt0 10411 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 835 df-3or 1070 df-3an 1071 df-tru 1511 df-ex 1744 df-nf 1748 df-sb 2017 df-mo 2548 df-eu 2585 df-clab 2754 df-cleq 2766 df-clel 2841 df-nfc 2913 df-ne 2963 df-nel 3069 df-ral 3088 df-rex 3089 df-reu 3090 df-rmo 3091 df-rab 3092 df-v 3412 df-sbc 3677 df-csb 3782 df-dif 3827 df-un 3829 df-in 3831 df-ss 3838 df-pss 3840 df-nul 4174 df-if 4346 df-pw 4419 df-sn 4437 df-pr 4439 df-tp 4441 df-op 4443 df-ot 4445 df-uni 4710 df-int 4747 df-iun 4791 df-br 4927 df-opab 4989 df-mpt 5006 df-tr 5028 df-id 5309 df-eprel 5314 df-po 5323 df-so 5324 df-fr 5363 df-se 5364 df-we 5365 df-xp 5410 df-rel 5411 df-cnv 5412 df-co 5413 df-dm 5414 df-rn 5415 df-res 5416 df-ima 5417 df-pred 5984 df-ord 6030 df-on 6031 df-lim 6032 df-suc 6033 df-iota 6150 df-fun 6188 df-fn 6189 df-f 6190 df-f1 6191 df-fo 6192 df-f1o 6193 df-fv 6194 df-isom 6195 df-riota 6936 df-ov 6978 df-oprab 6979 df-mpo 6980 df-om 7396 df-1st 7500 df-2nd 7501 df-supp 7633 df-wrecs 7749 df-recs 7811 df-rdg 7849 df-1o 7904 df-oadd 7908 df-er 8088 df-map 8207 df-ixp 8259 df-en 8306 df-dom 8307 df-sdom 8308 df-fin 8309 df-fsupp 8628 df-sup 8700 df-oi 8768 df-card 9161 df-pnf 10475 df-mnf 10476 df-xr 10477 df-ltxr 10478 df-le 10479 df-sub 10671 df-neg 10672 df-nn 11439 df-2 11502 df-3 11503 df-4 11504 df-5 11505 df-6 11506 df-7 11507 df-8 11508 df-9 11509 df-n0 11707 df-z 11793 df-dec 11911 df-uz 12058 df-fz 12708 df-fzo 12849 df-seq 13184 df-hash 13505 df-struct 16340 df-ndx 16341 df-slot 16342 df-base 16344 df-sets 16345 df-ress 16346 df-plusg 16433 df-mulr 16434 df-sca 16436 df-vsca 16437 df-ip 16438 df-tset 16439 df-ple 16440 df-ds 16442 df-hom 16444 df-cco 16445 df-0g 16570 df-gsum 16571 df-prds 16576 df-pws 16578 df-mgm 17723 df-sgrp 17765 df-mnd 17776 df-cntz 18231 df-cmn 18681 df-mgp 18976 df-cring 19036 df-sra 19679 df-rgmod 19680 df-dsmm 20594 df-frlm 20609 df-mat 20737 |
This theorem is referenced by: madetsumid 20790 |
Copyright terms: Public domain | W3C validator |