MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matgsumcl Structured version   Visualization version   GIF version

Theorem matgsumcl 22329
Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
madetsumid.a 𝐴 = (𝑁 Mat 𝑅)
madetsumid.b 𝐵 = (Base‘𝐴)
madetsumid.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
matgsumcl ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈 Σg (𝑟𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅))
Distinct variable groups:   𝐵,𝑟   𝑀,𝑟   𝑁,𝑟   𝑅,𝑟
Allowed substitution hints:   𝐴(𝑟)   𝑈(𝑟)

Proof of Theorem matgsumcl
StepHypRef Expression
1 madetsumid.u . . 3 𝑈 = (mulGrp‘𝑅)
2 eqid 2729 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 20017 . 2 (Base‘𝑅) = (Base‘𝑈)
41crngmgp 20113 . . 3 (𝑅 ∈ CRing → 𝑈 ∈ CMnd)
54adantr 480 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑈 ∈ CMnd)
6 madetsumid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
7 madetsumid.b . . . . 5 𝐵 = (Base‘𝐴)
86, 7matrcl 22281 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98adantl 481 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
109simpld 494 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
11 simpr 484 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
126, 2, 7matbas2i 22291 . . . . . 6 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)))
13 elmapi 8767 . . . . . 6 (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
1411, 12, 133syl 18 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
1514adantr 480 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
16 simpr 484 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → 𝑟𝑁)
1715, 16, 16fovcdmd 7512 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → (𝑟𝑀𝑟) ∈ (Base‘𝑅))
1817ralrimiva 3121 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑟𝑁 (𝑟𝑀𝑟) ∈ (Base‘𝑅))
193, 5, 10, 18gsummptcl 19833 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈 Σg (𝑟𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3433  cmpt 5169   × cxp 5611  wf 6472  cfv 6476  (class class class)co 7340  m cmap 8744  Fincfn 8863  Basecbs 17107   Σg cgsu 17331  CMndccmn 19646  mulGrpcmgp 20012  CRingccrg 20106   Mat cmat 22276
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5214  ax-sep 5231  ax-nul 5241  ax-pow 5300  ax-pr 5367  ax-un 7662  ax-cnex 11053  ax-resscn 11054  ax-1cn 11055  ax-icn 11056  ax-addcl 11057  ax-addrcl 11058  ax-mulcl 11059  ax-mulrcl 11060  ax-mulcom 11061  ax-addass 11062  ax-mulass 11063  ax-distr 11064  ax-i2m1 11065  ax-1ne0 11066  ax-1rid 11067  ax-rnegex 11068  ax-rrecex 11069  ax-cnre 11070  ax-pre-lttri 11071  ax-pre-lttrn 11072  ax-pre-ltadd 11073  ax-pre-mulgt0 11074
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3393  df-v 3435  df-sbc 3739  df-csb 3848  df-dif 3902  df-un 3904  df-in 3906  df-ss 3916  df-pss 3919  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-ot 4582  df-uni 4857  df-int 4895  df-iun 4940  df-br 5089  df-opab 5151  df-mpt 5170  df-tr 5196  df-id 5508  df-eprel 5513  df-po 5521  df-so 5522  df-fr 5566  df-se 5567  df-we 5568  df-xp 5619  df-rel 5620  df-cnv 5621  df-co 5622  df-dm 5623  df-rn 5624  df-res 5625  df-ima 5626  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-isom 6485  df-riota 7297  df-ov 7343  df-oprab 7344  df-mpo 7345  df-om 7791  df-1st 7915  df-2nd 7916  df-supp 8085  df-frecs 8205  df-wrecs 8236  df-recs 8285  df-rdg 8323  df-1o 8379  df-er 8616  df-map 8746  df-ixp 8816  df-en 8864  df-dom 8865  df-sdom 8866  df-fin 8867  df-fsupp 9240  df-sup 9320  df-oi 9390  df-card 9823  df-pnf 11139  df-mnf 11140  df-xr 11141  df-ltxr 11142  df-le 11143  df-sub 11337  df-neg 11338  df-nn 12117  df-2 12179  df-3 12180  df-4 12181  df-5 12182  df-6 12183  df-7 12184  df-8 12185  df-9 12186  df-n0 12373  df-z 12460  df-dec 12580  df-uz 12724  df-fz 13399  df-fzo 13546  df-seq 13897  df-hash 14226  df-struct 17045  df-sets 17062  df-slot 17080  df-ndx 17092  df-base 17108  df-ress 17129  df-plusg 17161  df-mulr 17162  df-sca 17164  df-vsca 17165  df-ip 17166  df-tset 17167  df-ple 17168  df-ds 17170  df-hom 17172  df-cco 17173  df-0g 17332  df-gsum 17333  df-prds 17338  df-pws 17340  df-mgm 18501  df-sgrp 18580  df-mnd 18596  df-cntz 19183  df-cmn 19648  df-mgp 20013  df-cring 20108  df-sra 21061  df-rgmod 21062  df-dsmm 21623  df-frlm 21638  df-mat 22277
This theorem is referenced by:  madetsumid  22330
  Copyright terms: Public domain W3C validator