MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  matgsumcl Structured version   Visualization version   GIF version

Theorem matgsumcl 20789
Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.)
Hypotheses
Ref Expression
madetsumid.a 𝐴 = (𝑁 Mat 𝑅)
madetsumid.b 𝐵 = (Base‘𝐴)
madetsumid.u 𝑈 = (mulGrp‘𝑅)
Assertion
Ref Expression
matgsumcl ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈 Σg (𝑟𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅))
Distinct variable groups:   𝐵,𝑟   𝑀,𝑟   𝑁,𝑟   𝑅,𝑟
Allowed substitution hints:   𝐴(𝑟)   𝑈(𝑟)

Proof of Theorem matgsumcl
StepHypRef Expression
1 madetsumid.u . . 3 𝑈 = (mulGrp‘𝑅)
2 eqid 2773 . . 3 (Base‘𝑅) = (Base‘𝑅)
31, 2mgpbas 18981 . 2 (Base‘𝑅) = (Base‘𝑈)
41crngmgp 19041 . . 3 (𝑅 ∈ CRing → 𝑈 ∈ CMnd)
54adantr 473 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑈 ∈ CMnd)
6 madetsumid.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
7 madetsumid.b . . . . 5 𝐵 = (Base‘𝐴)
86, 7matrcl 20741 . . . 4 (𝑀𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
98adantl 474 . . 3 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V))
109simpld 487 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑁 ∈ Fin)
11 simpr 477 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀𝐵)
126, 2, 7matbas2i 20751 . . . . . 6 (𝑀𝐵𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)))
13 elmapi 8227 . . . . . 6 (𝑀 ∈ ((Base‘𝑅) ↑𝑚 (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
1411, 12, 133syl 18 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
1514adantr 473 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅))
16 simpr 477 . . . 4 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → 𝑟𝑁)
1715, 16, 16fovrnd 7135 . . 3 (((𝑅 ∈ CRing ∧ 𝑀𝐵) ∧ 𝑟𝑁) → (𝑟𝑀𝑟) ∈ (Base‘𝑅))
1817ralrimiva 3127 . 2 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → ∀𝑟𝑁 (𝑟𝑀𝑟) ∈ (Base‘𝑅))
193, 5, 10, 18gsummptcl 18853 1 ((𝑅 ∈ CRing ∧ 𝑀𝐵) → (𝑈 Σg (𝑟𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387   = wceq 1508  wcel 2051  Vcvv 3410  cmpt 5005   × cxp 5402  wf 6182  cfv 6186  (class class class)co 6975  𝑚 cmap 8205  Fincfn 8305  Basecbs 16338   Σg cgsu 16569  CMndccmn 18679  mulGrpcmgp 18975  CRingccrg 19034   Mat cmat 20736
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2745  ax-rep 5046  ax-sep 5057  ax-nul 5064  ax-pow 5116  ax-pr 5183  ax-un 7278  ax-cnex 10390  ax-resscn 10391  ax-1cn 10392  ax-icn 10393  ax-addcl 10394  ax-addrcl 10395  ax-mulcl 10396  ax-mulrcl 10397  ax-mulcom 10398  ax-addass 10399  ax-mulass 10400  ax-distr 10401  ax-i2m1 10402  ax-1ne0 10403  ax-1rid 10404  ax-rnegex 10405  ax-rrecex 10406  ax-cnre 10407  ax-pre-lttri 10408  ax-pre-lttrn 10409  ax-pre-ltadd 10410  ax-pre-mulgt0 10411
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2548  df-eu 2585  df-clab 2754  df-cleq 2766  df-clel 2841  df-nfc 2913  df-ne 2963  df-nel 3069  df-ral 3088  df-rex 3089  df-reu 3090  df-rmo 3091  df-rab 3092  df-v 3412  df-sbc 3677  df-csb 3782  df-dif 3827  df-un 3829  df-in 3831  df-ss 3838  df-pss 3840  df-nul 4174  df-if 4346  df-pw 4419  df-sn 4437  df-pr 4439  df-tp 4441  df-op 4443  df-ot 4445  df-uni 4710  df-int 4747  df-iun 4791  df-br 4927  df-opab 4989  df-mpt 5006  df-tr 5028  df-id 5309  df-eprel 5314  df-po 5323  df-so 5324  df-fr 5363  df-se 5364  df-we 5365  df-xp 5410  df-rel 5411  df-cnv 5412  df-co 5413  df-dm 5414  df-rn 5415  df-res 5416  df-ima 5417  df-pred 5984  df-ord 6030  df-on 6031  df-lim 6032  df-suc 6033  df-iota 6150  df-fun 6188  df-fn 6189  df-f 6190  df-f1 6191  df-fo 6192  df-f1o 6193  df-fv 6194  df-isom 6195  df-riota 6936  df-ov 6978  df-oprab 6979  df-mpo 6980  df-om 7396  df-1st 7500  df-2nd 7501  df-supp 7633  df-wrecs 7749  df-recs 7811  df-rdg 7849  df-1o 7904  df-oadd 7908  df-er 8088  df-map 8207  df-ixp 8259  df-en 8306  df-dom 8307  df-sdom 8308  df-fin 8309  df-fsupp 8628  df-sup 8700  df-oi 8768  df-card 9161  df-pnf 10475  df-mnf 10476  df-xr 10477  df-ltxr 10478  df-le 10479  df-sub 10671  df-neg 10672  df-nn 11439  df-2 11502  df-3 11503  df-4 11504  df-5 11505  df-6 11506  df-7 11507  df-8 11508  df-9 11509  df-n0 11707  df-z 11793  df-dec 11911  df-uz 12058  df-fz 12708  df-fzo 12849  df-seq 13184  df-hash 13505  df-struct 16340  df-ndx 16341  df-slot 16342  df-base 16344  df-sets 16345  df-ress 16346  df-plusg 16433  df-mulr 16434  df-sca 16436  df-vsca 16437  df-ip 16438  df-tset 16439  df-ple 16440  df-ds 16442  df-hom 16444  df-cco 16445  df-0g 16570  df-gsum 16571  df-prds 16576  df-pws 16578  df-mgm 17723  df-sgrp 17765  df-mnd 17776  df-cntz 18231  df-cmn 18681  df-mgp 18976  df-cring 19036  df-sra 19679  df-rgmod 19680  df-dsmm 20594  df-frlm 20609  df-mat 20737
This theorem is referenced by:  madetsumid  20790
  Copyright terms: Public domain W3C validator