| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > matgsumcl | Structured version Visualization version GIF version | ||
| Description: Closure of a group sum over the diagonal coefficients of a square matrix over a commutative ring. (Contributed by AV, 29-Dec-2018.) (Proof shortened by AV, 23-Jul-2019.) |
| Ref | Expression |
|---|---|
| madetsumid.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| madetsumid.b | ⊢ 𝐵 = (Base‘𝐴) |
| madetsumid.u | ⊢ 𝑈 = (mulGrp‘𝑅) |
| Ref | Expression |
|---|---|
| matgsumcl | ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | madetsumid.u | . . 3 ⊢ 𝑈 = (mulGrp‘𝑅) | |
| 2 | eqid 2729 | . . 3 ⊢ (Base‘𝑅) = (Base‘𝑅) | |
| 3 | 1, 2 | mgpbas 20017 | . 2 ⊢ (Base‘𝑅) = (Base‘𝑈) |
| 4 | 1 | crngmgp 20113 | . . 3 ⊢ (𝑅 ∈ CRing → 𝑈 ∈ CMnd) |
| 5 | 4 | adantr 480 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑈 ∈ CMnd) |
| 6 | madetsumid.a | . . . . 5 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 7 | madetsumid.b | . . . . 5 ⊢ 𝐵 = (Base‘𝐴) | |
| 8 | 6, 7 | matrcl 22281 | . . . 4 ⊢ (𝑀 ∈ 𝐵 → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 9 | 8 | adantl 481 | . . 3 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑁 ∈ Fin ∧ 𝑅 ∈ V)) |
| 10 | 9 | simpld 494 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑁 ∈ Fin) |
| 11 | simpr 484 | . . . . . 6 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ 𝐵) | |
| 12 | 6, 2, 7 | matbas2i 22291 | . . . . . 6 ⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁))) |
| 13 | elmapi 8767 | . . . . . 6 ⊢ (𝑀 ∈ ((Base‘𝑅) ↑m (𝑁 × 𝑁)) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) | |
| 14 | 11, 12, 13 | 3syl 18 | . . . . 5 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
| 15 | 14 | adantr 480 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → 𝑀:(𝑁 × 𝑁)⟶(Base‘𝑅)) |
| 16 | simpr 484 | . . . 4 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → 𝑟 ∈ 𝑁) | |
| 17 | 15, 16, 16 | fovcdmd 7512 | . . 3 ⊢ (((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) ∧ 𝑟 ∈ 𝑁) → (𝑟𝑀𝑟) ∈ (Base‘𝑅)) |
| 18 | 17 | ralrimiva 3121 | . 2 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → ∀𝑟 ∈ 𝑁 (𝑟𝑀𝑟) ∈ (Base‘𝑅)) |
| 19 | 3, 5, 10, 18 | gsummptcl 19833 | 1 ⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵) → (𝑈 Σg (𝑟 ∈ 𝑁 ↦ (𝑟𝑀𝑟))) ∈ (Base‘𝑅)) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 Vcvv 3433 ↦ cmpt 5169 × cxp 5611 ⟶wf 6472 ‘cfv 6476 (class class class)co 7340 ↑m cmap 8744 Fincfn 8863 Basecbs 17107 Σg cgsu 17331 CMndccmn 19646 mulGrpcmgp 20012 CRingccrg 20106 Mat cmat 22276 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5214 ax-sep 5231 ax-nul 5241 ax-pow 5300 ax-pr 5367 ax-un 7662 ax-cnex 11053 ax-resscn 11054 ax-1cn 11055 ax-icn 11056 ax-addcl 11057 ax-addrcl 11058 ax-mulcl 11059 ax-mulrcl 11060 ax-mulcom 11061 ax-addass 11062 ax-mulass 11063 ax-distr 11064 ax-i2m1 11065 ax-1ne0 11066 ax-1rid 11067 ax-rnegex 11068 ax-rrecex 11069 ax-cnre 11070 ax-pre-lttri 11071 ax-pre-lttrn 11072 ax-pre-ltadd 11073 ax-pre-mulgt0 11074 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3343 df-reu 3344 df-rab 3393 df-v 3435 df-sbc 3739 df-csb 3848 df-dif 3902 df-un 3904 df-in 3906 df-ss 3916 df-pss 3919 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-tp 4578 df-op 4580 df-ot 4582 df-uni 4857 df-int 4895 df-iun 4940 df-br 5089 df-opab 5151 df-mpt 5170 df-tr 5196 df-id 5508 df-eprel 5513 df-po 5521 df-so 5522 df-fr 5566 df-se 5567 df-we 5568 df-xp 5619 df-rel 5620 df-cnv 5621 df-co 5622 df-dm 5623 df-rn 5624 df-res 5625 df-ima 5626 df-pred 6243 df-ord 6304 df-on 6305 df-lim 6306 df-suc 6307 df-iota 6432 df-fun 6478 df-fn 6479 df-f 6480 df-f1 6481 df-fo 6482 df-f1o 6483 df-fv 6484 df-isom 6485 df-riota 7297 df-ov 7343 df-oprab 7344 df-mpo 7345 df-om 7791 df-1st 7915 df-2nd 7916 df-supp 8085 df-frecs 8205 df-wrecs 8236 df-recs 8285 df-rdg 8323 df-1o 8379 df-er 8616 df-map 8746 df-ixp 8816 df-en 8864 df-dom 8865 df-sdom 8866 df-fin 8867 df-fsupp 9240 df-sup 9320 df-oi 9390 df-card 9823 df-pnf 11139 df-mnf 11140 df-xr 11141 df-ltxr 11142 df-le 11143 df-sub 11337 df-neg 11338 df-nn 12117 df-2 12179 df-3 12180 df-4 12181 df-5 12182 df-6 12183 df-7 12184 df-8 12185 df-9 12186 df-n0 12373 df-z 12460 df-dec 12580 df-uz 12724 df-fz 13399 df-fzo 13546 df-seq 13897 df-hash 14226 df-struct 17045 df-sets 17062 df-slot 17080 df-ndx 17092 df-base 17108 df-ress 17129 df-plusg 17161 df-mulr 17162 df-sca 17164 df-vsca 17165 df-ip 17166 df-tset 17167 df-ple 17168 df-ds 17170 df-hom 17172 df-cco 17173 df-0g 17332 df-gsum 17333 df-prds 17338 df-pws 17340 df-mgm 18501 df-sgrp 18580 df-mnd 18596 df-cntz 19183 df-cmn 19648 df-mgp 20013 df-cring 20108 df-sra 21061 df-rgmod 21062 df-dsmm 21623 df-frlm 21638 df-mat 22277 |
| This theorem is referenced by: madetsumid 22330 |
| Copyright terms: Public domain | W3C validator |