| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl3 1194 | . . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑀 ∈ 𝐵) | 
| 2 |  | mdetdiag.d | . . . . 5
⊢ 𝐷 = (𝑁 maDet 𝑅) | 
| 3 |  | mdetdiag.a | . . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) | 
| 4 |  | mdetdiag.b | . . . . 5
⊢ 𝐵 = (Base‘𝐴) | 
| 5 |  | eqid 2737 | . . . . 5
⊢
(Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) | 
| 6 |  | eqid 2737 | . . . . 5
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) | 
| 7 |  | eqid 2737 | . . . . 5
⊢
(pmSgn‘𝑁) =
(pmSgn‘𝑁) | 
| 8 |  | eqid 2737 | . . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) | 
| 9 |  | mdetdiag.g | . . . . 5
⊢ 𝐺 = (mulGrp‘𝑅) | 
| 10 | 2, 3, 4, 5, 6, 7, 8, 9 | mdetleib 22593 | . . . 4
⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘))))))) | 
| 11 | 1, 10 | syl 17 | . . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘))))))) | 
| 12 |  | simpl1 1192 | . . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑅 ∈ CRing) | 
| 13 | 12 | ad2antrr 726 | . . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → 𝑅 ∈ CRing) | 
| 14 | 1 | ad2antrr 726 | . . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → 𝑀 ∈ 𝐵) | 
| 15 |  | simpr 484 | . . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → 𝑝 = ( I ↾ 𝑁)) | 
| 16 | 3, 4, 9, 6, 7, 8 | madetsumid 22467 | . . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) | 
| 17 | 13, 14, 15, 16 | syl3anc 1373 | . . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) | 
| 18 |  | iftrue 4531 | . . . . . . . . 9
⊢ (𝑝 = ( I ↾ 𝑁) → if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 ) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) | 
| 19 | 18 | eqcomd 2743 | . . . . . . . 8
⊢ (𝑝 = ( I ↾ 𝑁) → (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) | 
| 20 | 19 | adantl 481 | . . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) | 
| 21 | 17, 20 | eqtrd 2777 | . . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) | 
| 22 |  | simplll 775 | . . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵)) | 
| 23 |  | simpr 484 | . . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) | 
| 24 | 23 | ad2antrr 726 | . . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) | 
| 25 |  | simpr 484 | . . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) → 𝑝 ∈ (Base‘(SymGrp‘𝑁))) | 
| 26 |  | neqne 2948 | . . . . . . . . 9
⊢ (¬
𝑝 = ( I ↾ 𝑁) → 𝑝 ≠ ( I ↾ 𝑁)) | 
| 27 | 25, 26 | anim12i 613 | . . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ≠ ( I ↾ 𝑁))) | 
| 28 |  | mdetdiag.0 | . . . . . . . . 9
⊢  0 =
(0g‘𝑅) | 
| 29 | 2, 3, 4, 9, 28, 5,
6, 7, 8 | mdetdiaglem 22604 | . . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ∧ 𝑝 ≠ ( I ↾ 𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = 0 ) | 
| 30 | 22, 24, 27, 29 | syl3anc 1373 | . . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = 0 ) | 
| 31 |  | iffalse 4534 | . . . . . . . . 9
⊢ (¬
𝑝 = ( I ↾ 𝑁) → if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 ) = 0 ) | 
| 32 | 31 | adantl 481 | . . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 ) = 0 ) | 
| 33 | 32 | eqcomd 2743 | . . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → 0 = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) | 
| 34 | 30, 33 | eqtrd 2777 | . . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) | 
| 35 | 21, 34 | pm2.61dan 813 | . . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) | 
| 36 | 35 | mpteq2dva 5242 | . . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 ))) | 
| 37 | 36 | oveq2d 7447 | . . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )))) | 
| 38 |  | crngring 20242 | . . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) | 
| 39 |  | ringmnd 20240 | . . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) | 
| 40 | 38, 39 | syl 17 | . . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Mnd) | 
| 41 | 40 | 3ad2ant1 1134 | . . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Mnd) | 
| 42 | 41 | adantr 480 | . . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑅 ∈ Mnd) | 
| 43 |  | fvexd 6921 | . . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) →
(Base‘(SymGrp‘𝑁)) ∈ V) | 
| 44 |  | eqid 2737 | . . . . . . . 8
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) | 
| 45 | 44 | symgid 19419 | . . . . . . 7
⊢ (𝑁 ∈ Fin → ( I ↾
𝑁) =
(0g‘(SymGrp‘𝑁))) | 
| 46 | 45 | 3ad2ant2 1135 | . . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁))) | 
| 47 | 44 | symggrp 19418 | . . . . . . . 8
⊢ (𝑁 ∈ Fin →
(SymGrp‘𝑁) ∈
Grp) | 
| 48 | 47 | 3ad2ant2 1135 | . . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → (SymGrp‘𝑁) ∈ Grp) | 
| 49 |  | eqid 2737 | . . . . . . . 8
⊢
(0g‘(SymGrp‘𝑁)) =
(0g‘(SymGrp‘𝑁)) | 
| 50 | 5, 49 | grpidcl 18983 | . . . . . . 7
⊢
((SymGrp‘𝑁)
∈ Grp → (0g‘(SymGrp‘𝑁)) ∈ (Base‘(SymGrp‘𝑁))) | 
| 51 | 48, 50 | syl 17 | . . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) →
(0g‘(SymGrp‘𝑁)) ∈ (Base‘(SymGrp‘𝑁))) | 
| 52 | 46, 51 | eqeltrd 2841 | . . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → ( I ↾ 𝑁) ∈ (Base‘(SymGrp‘𝑁))) | 
| 53 | 52 | adantr 480 | . . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → ( I ↾
𝑁) ∈
(Base‘(SymGrp‘𝑁))) | 
| 54 |  | eqid 2737 | . . . 4
⊢ (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) | 
| 55 |  | eqid 2737 | . . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) | 
| 56 | 9, 55 | mgpbas 20142 | . . . . 5
⊢
(Base‘𝑅) =
(Base‘𝐺) | 
| 57 | 9 | crngmgp 20238 | . . . . . . 7
⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) | 
| 58 | 57 | 3ad2ant1 1134 | . . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ CMnd) | 
| 59 | 58 | adantr 480 | . . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝐺 ∈ CMnd) | 
| 60 |  | simpl2 1193 | . . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑁 ∈ Fin) | 
| 61 |  | simpr 484 | . . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) | 
| 62 | 4 | eleq2i 2833 | . . . . . . . . . 10
⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) | 
| 63 | 62 | biimpi 216 | . . . . . . . . 9
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) | 
| 64 | 63 | 3ad2ant3 1136 | . . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ (Base‘𝐴)) | 
| 65 | 64 | ad2antrr 726 | . . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) | 
| 66 | 3, 55 | matecl 22431 | . . . . . . 7
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑘𝑀𝑘) ∈ (Base‘𝑅)) | 
| 67 | 61, 61, 65, 66 | syl3anc 1373 | . . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘 ∈ 𝑁) → (𝑘𝑀𝑘) ∈ (Base‘𝑅)) | 
| 68 | 67 | ralrimiva 3146 | . . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → ∀𝑘 ∈ 𝑁 (𝑘𝑀𝑘) ∈ (Base‘𝑅)) | 
| 69 | 56, 59, 60, 68 | gsummptcl 19985 | . . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))) ∈ (Base‘𝑅)) | 
| 70 | 28, 42, 43, 53, 54, 69 | gsummptif1n0 19984 | . . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 ))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) | 
| 71 | 11, 37, 70 | 3eqtrd 2781 | . 2
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐷‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) | 
| 72 | 71 | ex 412 | 1
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ) → (𝐷‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))))) |