MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mdetdiag Structured version   Visualization version   GIF version

Theorem mdetdiag 22100
Description: The determinant of a diagonal matrix is the product of the entries in the diagonal. (Contributed by AV, 17-Aug-2019.)
Hypotheses
Ref Expression
mdetdiag.d 𝐷 = (𝑁 maDet 𝑅)
mdetdiag.a 𝐴 = (𝑁 Mat 𝑅)
mdetdiag.b 𝐵 = (Base‘𝐴)
mdetdiag.g 𝐺 = (mulGrp‘𝑅)
mdetdiag.0 0 = (0g𝑅)
Assertion
Ref Expression
mdetdiag ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → (𝐷𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘)))))
Distinct variable groups:   𝐵,𝑘   𝑘,𝐺   𝑖,𝑀,𝑗,𝑘   𝑖,𝑁,𝑗,𝑘   𝑅,𝑘   0 ,𝑖,𝑗,𝑘
Allowed substitution hints:   𝐴(𝑖,𝑗,𝑘)   𝐵(𝑖,𝑗)   𝐷(𝑖,𝑗,𝑘)   𝑅(𝑖,𝑗)   𝐺(𝑖,𝑗)

Proof of Theorem mdetdiag
Dummy variable 𝑝 is distinct from all other variables.
StepHypRef Expression
1 simpl3 1193 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑀𝐵)
2 mdetdiag.d . . . . 5 𝐷 = (𝑁 maDet 𝑅)
3 mdetdiag.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
4 mdetdiag.b . . . . 5 𝐵 = (Base‘𝐴)
5 eqid 2732 . . . . 5 (Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁))
6 eqid 2732 . . . . 5 (ℤRHom‘𝑅) = (ℤRHom‘𝑅)
7 eqid 2732 . . . . 5 (pmSgn‘𝑁) = (pmSgn‘𝑁)
8 eqid 2732 . . . . 5 (.r𝑅) = (.r𝑅)
9 mdetdiag.g . . . . 5 𝐺 = (mulGrp‘𝑅)
102, 3, 4, 5, 6, 7, 8, 9mdetleib 22088 . . . 4 (𝑀𝐵 → (𝐷𝑀) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘)))))))
111, 10syl 17 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐷𝑀) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘)))))))
12 simpl1 1191 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑅 ∈ CRing)
1312ad2antrr 724 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → 𝑅 ∈ CRing)
141ad2antrr 724 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → 𝑀𝐵)
15 simpr 485 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → 𝑝 = ( I ↾ 𝑁))
163, 4, 9, 6, 7, 8madetsumid 21962 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑀𝐵𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘)))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))))
1713, 14, 15, 16syl3anc 1371 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘)))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))))
18 iftrue 4534 . . . . . . . . 9 (𝑝 = ( I ↾ 𝑁) → if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ) = (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))))
1918eqcomd 2738 . . . . . . . 8 (𝑝 = ( I ↾ 𝑁) → (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ))
2019adantl 482 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ))
2117, 20eqtrd 2772 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘)))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ))
22 simplll 773 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵))
23 simpr 485 . . . . . . . . 9 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))
2423ad2antrr 724 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ))
25 simpr 485 . . . . . . . . 9 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → 𝑝 ∈ (Base‘(SymGrp‘𝑁)))
26 neqne 2948 . . . . . . . . 9 𝑝 = ( I ↾ 𝑁) → 𝑝 ≠ ( I ↾ 𝑁))
2725, 26anim12i 613 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ≠ ( I ↾ 𝑁)))
28 mdetdiag.0 . . . . . . . . 9 0 = (0g𝑅)
292, 3, 4, 9, 28, 5, 6, 7, 8mdetdiaglem 22099 . . . . . . . 8 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ≠ ( I ↾ 𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘)))) = 0 )
3022, 24, 27, 29syl3anc 1371 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘)))) = 0 )
31 iffalse 4537 . . . . . . . . 9 𝑝 = ( I ↾ 𝑁) → if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ) = 0 )
3231adantl 482 . . . . . . . 8 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ) = 0 )
3332eqcomd 2738 . . . . . . 7 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → 0 = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ))
3430, 33eqtrd 2772 . . . . . 6 (((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘)))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ))
3521, 34pm2.61dan 811 . . . . 5 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈ (Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘)))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ))
3635mpteq2dva 5248 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 )))
3736oveq2d 7424 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r𝑅)(𝐺 Σg (𝑘𝑁 ↦ ((𝑝𝑘)𝑀𝑘)))))) = (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ))))
38 crngring 20067 . . . . . . 7 (𝑅 ∈ CRing → 𝑅 ∈ Ring)
39 ringmnd 20065 . . . . . . 7 (𝑅 ∈ Ring → 𝑅 ∈ Mnd)
4038, 39syl 17 . . . . . 6 (𝑅 ∈ CRing → 𝑅 ∈ Mnd)
41403ad2ant1 1133 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑅 ∈ Mnd)
4241adantr 481 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑅 ∈ Mnd)
43 fvexd 6906 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (Base‘(SymGrp‘𝑁)) ∈ V)
44 eqid 2732 . . . . . . . 8 (SymGrp‘𝑁) = (SymGrp‘𝑁)
4544symgid 19268 . . . . . . 7 (𝑁 ∈ Fin → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
46453ad2ant2 1134 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁)))
4744symggrp 19267 . . . . . . . 8 (𝑁 ∈ Fin → (SymGrp‘𝑁) ∈ Grp)
48473ad2ant2 1134 . . . . . . 7 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (SymGrp‘𝑁) ∈ Grp)
49 eqid 2732 . . . . . . . 8 (0g‘(SymGrp‘𝑁)) = (0g‘(SymGrp‘𝑁))
505, 49grpidcl 18849 . . . . . . 7 ((SymGrp‘𝑁) ∈ Grp → (0g‘(SymGrp‘𝑁)) ∈ (Base‘(SymGrp‘𝑁)))
5148, 50syl 17 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (0g‘(SymGrp‘𝑁)) ∈ (Base‘(SymGrp‘𝑁)))
5246, 51eqeltrd 2833 . . . . 5 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → ( I ↾ 𝑁) ∈ (Base‘(SymGrp‘𝑁)))
5352adantr 481 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ( I ↾ 𝑁) ∈ (Base‘(SymGrp‘𝑁)))
54 eqid 2732 . . . 4 (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 )) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ))
55 eqid 2732 . . . . . 6 (Base‘𝑅) = (Base‘𝑅)
569, 55mgpbas 19992 . . . . 5 (Base‘𝑅) = (Base‘𝐺)
579crngmgp 20063 . . . . . . 7 (𝑅 ∈ CRing → 𝐺 ∈ CMnd)
58573ad2ant1 1133 . . . . . 6 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝐺 ∈ CMnd)
5958adantr 481 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝐺 ∈ CMnd)
60 simpl2 1192 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑁 ∈ Fin)
61 simpr 485 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘𝑁) → 𝑘𝑁)
624eleq2i 2825 . . . . . . . . . 10 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
6362biimpi 215 . . . . . . . . 9 (𝑀𝐵𝑀 ∈ (Base‘𝐴))
64633ad2ant3 1135 . . . . . . . 8 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → 𝑀 ∈ (Base‘𝐴))
6564ad2antrr 724 . . . . . . 7 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘𝑁) → 𝑀 ∈ (Base‘𝐴))
663, 55matecl 21926 . . . . . . 7 ((𝑘𝑁𝑘𝑁𝑀 ∈ (Base‘𝐴)) → (𝑘𝑀𝑘) ∈ (Base‘𝑅))
6761, 61, 65, 66syl3anc 1371 . . . . . 6 ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘𝑁) → (𝑘𝑀𝑘) ∈ (Base‘𝑅))
6867ralrimiva 3146 . . . . 5 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → ∀𝑘𝑁 (𝑘𝑀𝑘) ∈ (Base‘𝑅))
6956, 59, 60, 68gsummptcl 19834 . . . 4 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))) ∈ (Base‘𝑅))
7028, 42, 43, 53, 54, 69gsummptif1n0 19833 . . 3 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑅 Σg (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))), 0 ))) = (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))))
7111, 37, 703eqtrd 2776 . 2 (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) ∧ ∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐷𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘))))
7271ex 413 1 ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀𝐵) → (∀𝑖𝑁𝑗𝑁 (𝑖𝑗 → (𝑖𝑀𝑗) = 0 ) → (𝐷𝑀) = (𝐺 Σg (𝑘𝑁 ↦ (𝑘𝑀𝑘)))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  wne 2940  wral 3061  Vcvv 3474  ifcif 4528  cmpt 5231   I cid 5573  cres 5678  ccom 5680  cfv 6543  (class class class)co 7408  Fincfn 8938  Basecbs 17143  .rcmulr 17197  0gc0g 17384   Σg cgsu 17385  Mndcmnd 18624  Grpcgrp 18818  SymGrpcsymg 19233  pmSgncpsgn 19356  CMndccmn 19647  mulGrpcmgp 19986  Ringcrg 20055  CRingccrg 20056  ℤRHomczrh 21048   Mat cmat 21906   maDet cmdat 22085
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186  ax-addf 11188  ax-mulf 11189
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-xor 1510  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-tp 4633  df-op 4635  df-ot 4637  df-uni 4909  df-int 4951  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-se 5632  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-isom 6552  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-of 7669  df-om 7855  df-1st 7974  df-2nd 7975  df-supp 8146  df-tpos 8210  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-2o 8466  df-er 8702  df-map 8821  df-ixp 8891  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-fsupp 9361  df-sup 9436  df-oi 9504  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-div 11871  df-nn 12212  df-2 12274  df-3 12275  df-4 12276  df-5 12277  df-6 12278  df-7 12279  df-8 12280  df-9 12281  df-n0 12472  df-xnn0 12544  df-z 12558  df-dec 12677  df-uz 12822  df-rp 12974  df-fz 13484  df-fzo 13627  df-seq 13966  df-exp 14027  df-hash 14290  df-word 14464  df-lsw 14512  df-concat 14520  df-s1 14545  df-substr 14590  df-pfx 14620  df-splice 14699  df-reverse 14708  df-s2 14798  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-mulr 17210  df-starv 17211  df-sca 17212  df-vsca 17213  df-ip 17214  df-tset 17215  df-ple 17216  df-ds 17218  df-unif 17219  df-hom 17220  df-cco 17221  df-0g 17386  df-gsum 17387  df-prds 17392  df-pws 17394  df-mre 17529  df-mrc 17530  df-acs 17532  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-mhm 18670  df-submnd 18671  df-efmnd 18749  df-grp 18821  df-minusg 18822  df-mulg 18950  df-subg 19002  df-ghm 19089  df-gim 19132  df-cntz 19180  df-oppg 19209  df-symg 19234  df-pmtr 19309  df-psgn 19358  df-cmn 19649  df-abl 19650  df-mgp 19987  df-ur 20004  df-ring 20057  df-cring 20058  df-oppr 20149  df-dvdsr 20170  df-unit 20171  df-invr 20201  df-dvr 20214  df-rnghom 20250  df-subrg 20316  df-drng 20358  df-sra 20784  df-rgmod 20785  df-cnfld 20944  df-zring 21017  df-zrh 21052  df-dsmm 21286  df-frlm 21301  df-mat 21907  df-mdet 22086
This theorem is referenced by:  mdetdiagid  22101  chpdmat  22342
  Copyright terms: Public domain W3C validator