Step | Hyp | Ref
| Expression |
1 | | simpl3 1192 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑀 ∈ 𝐵) |
2 | | mdetdiag.d |
. . . . 5
⊢ 𝐷 = (𝑁 maDet 𝑅) |
3 | | mdetdiag.a |
. . . . 5
⊢ 𝐴 = (𝑁 Mat 𝑅) |
4 | | mdetdiag.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐴) |
5 | | eqid 2738 |
. . . . 5
⊢
(Base‘(SymGrp‘𝑁)) = (Base‘(SymGrp‘𝑁)) |
6 | | eqid 2738 |
. . . . 5
⊢
(ℤRHom‘𝑅) = (ℤRHom‘𝑅) |
7 | | eqid 2738 |
. . . . 5
⊢
(pmSgn‘𝑁) =
(pmSgn‘𝑁) |
8 | | eqid 2738 |
. . . . 5
⊢
(.r‘𝑅) = (.r‘𝑅) |
9 | | mdetdiag.g |
. . . . 5
⊢ 𝐺 = (mulGrp‘𝑅) |
10 | 2, 3, 4, 5, 6, 7, 8, 9 | mdetleib 21736 |
. . . 4
⊢ (𝑀 ∈ 𝐵 → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘))))))) |
11 | 1, 10 | syl 17 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐷‘𝑀) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘))))))) |
12 | | simpl1 1190 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑅 ∈ CRing) |
13 | 12 | ad2antrr 723 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → 𝑅 ∈ CRing) |
14 | 1 | ad2antrr 723 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → 𝑀 ∈ 𝐵) |
15 | | simpr 485 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → 𝑝 = ( I ↾ 𝑁)) |
16 | 3, 4, 9, 6, 7, 8 | madetsumid 21610 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) |
17 | 13, 14, 15, 16 | syl3anc 1370 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) |
18 | | iftrue 4465 |
. . . . . . . . 9
⊢ (𝑝 = ( I ↾ 𝑁) → if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 ) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) |
19 | 18 | eqcomd 2744 |
. . . . . . . 8
⊢ (𝑝 = ( I ↾ 𝑁) → (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) |
20 | 19 | adantl 482 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) |
21 | 17, 20 | eqtrd 2778 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) |
22 | | simplll 772 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → (𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵)) |
23 | | simpr 485 |
. . . . . . . . 9
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) |
24 | 23 | ad2antrr 723 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) |
25 | | simpr 485 |
. . . . . . . . 9
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) → 𝑝 ∈ (Base‘(SymGrp‘𝑁))) |
26 | | neqne 2951 |
. . . . . . . . 9
⊢ (¬
𝑝 = ( I ↾ 𝑁) → 𝑝 ≠ ( I ↾ 𝑁)) |
27 | 25, 26 | anim12i 613 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ∧ 𝑝 ≠ ( I ↾ 𝑁))) |
28 | | mdetdiag.0 |
. . . . . . . . 9
⊢ 0 =
(0g‘𝑅) |
29 | 2, 3, 4, 9, 28, 5,
6, 7, 8 | mdetdiaglem 21747 |
. . . . . . . 8
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ) ∧ (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ∧ 𝑝 ≠ ( I ↾ 𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = 0 ) |
30 | 22, 24, 27, 29 | syl3anc 1370 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = 0 ) |
31 | | iffalse 4468 |
. . . . . . . . 9
⊢ (¬
𝑝 = ( I ↾ 𝑁) → if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 ) = 0 ) |
32 | 31 | adantl 482 |
. . . . . . . 8
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 ) = 0 ) |
33 | 32 | eqcomd 2744 |
. . . . . . 7
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → 0 = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) |
34 | 30, 33 | eqtrd 2778 |
. . . . . 6
⊢
(((((𝑅 ∈ CRing
∧ 𝑁 ∈ Fin ∧
𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) ∧ ¬ 𝑝 = ( I ↾ 𝑁)) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) |
35 | 21, 34 | pm2.61dan 810 |
. . . . 5
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑝 ∈
(Base‘(SymGrp‘𝑁))) → ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))) = if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) |
36 | 35 | mpteq2dva 5174 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘))))) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 ))) |
37 | 36 | oveq2d 7291 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ ((((ℤRHom‘𝑅) ∘ (pmSgn‘𝑁))‘𝑝)(.r‘𝑅)(𝐺 Σg (𝑘 ∈ 𝑁 ↦ ((𝑝‘𝑘)𝑀𝑘)))))) = (𝑅 Σg (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )))) |
38 | | crngring 19795 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Ring) |
39 | | ringmnd 19793 |
. . . . . . 7
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Mnd) |
40 | 38, 39 | syl 17 |
. . . . . 6
⊢ (𝑅 ∈ CRing → 𝑅 ∈ Mnd) |
41 | 40 | 3ad2ant1 1132 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → 𝑅 ∈ Mnd) |
42 | 41 | adantr 481 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑅 ∈ Mnd) |
43 | | fvexd 6789 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) →
(Base‘(SymGrp‘𝑁)) ∈ V) |
44 | | eqid 2738 |
. . . . . . . 8
⊢
(SymGrp‘𝑁) =
(SymGrp‘𝑁) |
45 | 44 | symgid 19009 |
. . . . . . 7
⊢ (𝑁 ∈ Fin → ( I ↾
𝑁) =
(0g‘(SymGrp‘𝑁))) |
46 | 45 | 3ad2ant2 1133 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → ( I ↾ 𝑁) = (0g‘(SymGrp‘𝑁))) |
47 | 44 | symggrp 19008 |
. . . . . . . 8
⊢ (𝑁 ∈ Fin →
(SymGrp‘𝑁) ∈
Grp) |
48 | 47 | 3ad2ant2 1133 |
. . . . . . 7
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → (SymGrp‘𝑁) ∈ Grp) |
49 | | eqid 2738 |
. . . . . . . 8
⊢
(0g‘(SymGrp‘𝑁)) =
(0g‘(SymGrp‘𝑁)) |
50 | 5, 49 | grpidcl 18607 |
. . . . . . 7
⊢
((SymGrp‘𝑁)
∈ Grp → (0g‘(SymGrp‘𝑁)) ∈ (Base‘(SymGrp‘𝑁))) |
51 | 48, 50 | syl 17 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) →
(0g‘(SymGrp‘𝑁)) ∈ (Base‘(SymGrp‘𝑁))) |
52 | 46, 51 | eqeltrd 2839 |
. . . . 5
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → ( I ↾ 𝑁) ∈ (Base‘(SymGrp‘𝑁))) |
53 | 52 | adantr 481 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → ( I ↾
𝑁) ∈
(Base‘(SymGrp‘𝑁))) |
54 | | eqid 2738 |
. . . 4
⊢ (𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) = (𝑝 ∈ (Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 )) |
55 | | eqid 2738 |
. . . . . 6
⊢
(Base‘𝑅) =
(Base‘𝑅) |
56 | 9, 55 | mgpbas 19726 |
. . . . 5
⊢
(Base‘𝑅) =
(Base‘𝐺) |
57 | 9 | crngmgp 19791 |
. . . . . . 7
⊢ (𝑅 ∈ CRing → 𝐺 ∈ CMnd) |
58 | 57 | 3ad2ant1 1132 |
. . . . . 6
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → 𝐺 ∈ CMnd) |
59 | 58 | adantr 481 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝐺 ∈ CMnd) |
60 | | simpl2 1191 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → 𝑁 ∈ Fin) |
61 | | simpr 485 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘 ∈ 𝑁) → 𝑘 ∈ 𝑁) |
62 | 4 | eleq2i 2830 |
. . . . . . . . . 10
⊢ (𝑀 ∈ 𝐵 ↔ 𝑀 ∈ (Base‘𝐴)) |
63 | 62 | biimpi 215 |
. . . . . . . . 9
⊢ (𝑀 ∈ 𝐵 → 𝑀 ∈ (Base‘𝐴)) |
64 | 63 | 3ad2ant3 1134 |
. . . . . . . 8
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → 𝑀 ∈ (Base‘𝐴)) |
65 | 64 | ad2antrr 723 |
. . . . . . 7
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘 ∈ 𝑁) → 𝑀 ∈ (Base‘𝐴)) |
66 | 3, 55 | matecl 21574 |
. . . . . . 7
⊢ ((𝑘 ∈ 𝑁 ∧ 𝑘 ∈ 𝑁 ∧ 𝑀 ∈ (Base‘𝐴)) → (𝑘𝑀𝑘) ∈ (Base‘𝑅)) |
67 | 61, 61, 65, 66 | syl3anc 1370 |
. . . . . 6
⊢ ((((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) ∧ 𝑘 ∈ 𝑁) → (𝑘𝑀𝑘) ∈ (Base‘𝑅)) |
68 | 67 | ralrimiva 3103 |
. . . . 5
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → ∀𝑘 ∈ 𝑁 (𝑘𝑀𝑘) ∈ (Base‘𝑅)) |
69 | 56, 59, 60, 68 | gsummptcl 19568 |
. . . 4
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐺 Σg
(𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))) ∈ (Base‘𝑅)) |
70 | 28, 42, 43, 53, 54, 69 | gsummptif1n0 19567 |
. . 3
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝑅 Σg
(𝑝 ∈
(Base‘(SymGrp‘𝑁)) ↦ if(𝑝 = ( I ↾ 𝑁), (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))), 0 ))) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) |
71 | 11, 37, 70 | 3eqtrd 2782 |
. 2
⊢ (((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) ∧ ∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 )) → (𝐷‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘)))) |
72 | 71 | ex 413 |
1
⊢ ((𝑅 ∈ CRing ∧ 𝑁 ∈ Fin ∧ 𝑀 ∈ 𝐵) → (∀𝑖 ∈ 𝑁 ∀𝑗 ∈ 𝑁 (𝑖 ≠ 𝑗 → (𝑖𝑀𝑗) = 0 ) → (𝐷‘𝑀) = (𝐺 Σg (𝑘 ∈ 𝑁 ↦ (𝑘𝑀𝑘))))) |