Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  dihmeetlem5 Structured version   Visualization version   GIF version

Theorem dihmeetlem5 40174
Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 6-Apr-2014.)
Hypotheses
Ref Expression
dihmeetlem5.b 𝐡 = (Baseβ€˜πΎ)
dihmeetlem5.l ≀ = (leβ€˜πΎ)
dihmeetlem5.j ∨ = (joinβ€˜πΎ)
dihmeetlem5.m ∧ = (meetβ€˜πΎ)
dihmeetlem5.a 𝐴 = (Atomsβ€˜πΎ)
Assertion
Ref Expression
dihmeetlem5 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ 𝑋)) β†’ (𝑋 ∧ (π‘Œ ∨ 𝑄)) = ((𝑋 ∧ π‘Œ) ∨ 𝑄))

Proof of Theorem dihmeetlem5
StepHypRef Expression
1 simpl1 1191 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ 𝑋)) β†’ 𝐾 ∈ HL)
2 simprl 769 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ 𝑋)) β†’ 𝑄 ∈ 𝐴)
3 simpl2 1192 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ 𝑋)) β†’ 𝑋 ∈ 𝐡)
4 simpl3 1193 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ 𝑋)) β†’ π‘Œ ∈ 𝐡)
5 simprr 771 . . 3 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ 𝑋)) β†’ 𝑄 ≀ 𝑋)
6 dihmeetlem5.b . . . 4 𝐡 = (Baseβ€˜πΎ)
7 dihmeetlem5.l . . . 4 ≀ = (leβ€˜πΎ)
8 dihmeetlem5.j . . . 4 ∨ = (joinβ€˜πΎ)
9 dihmeetlem5.m . . . 4 ∧ = (meetβ€˜πΎ)
10 dihmeetlem5.a . . . 4 𝐴 = (Atomsβ€˜πΎ)
116, 7, 8, 9, 10atmod2i1 38727 . . 3 ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ 𝑄 ≀ 𝑋) β†’ ((𝑋 ∧ π‘Œ) ∨ 𝑄) = (𝑋 ∧ (π‘Œ ∨ 𝑄)))
121, 2, 3, 4, 5, 11syl131anc 1383 . 2 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ 𝑋)) β†’ ((𝑋 ∧ π‘Œ) ∨ 𝑄) = (𝑋 ∧ (π‘Œ ∨ 𝑄)))
1312eqcomd 2738 1 (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐡 ∧ π‘Œ ∈ 𝐡) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≀ 𝑋)) β†’ (𝑋 ∧ (π‘Œ ∨ 𝑄)) = ((𝑋 ∧ π‘Œ) ∨ 𝑄))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 396   ∧ w3a 1087   = wceq 1541   ∈ wcel 2106   class class class wbr 5148  β€˜cfv 6543  (class class class)co 7408  Basecbs 17143  lecple 17203  joincjn 18263  meetcmee 18264  Atomscatm 38128  HLchlt 38215
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-iun 4999  df-iin 5000  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-1st 7974  df-2nd 7975  df-proset 18247  df-poset 18265  df-plt 18282  df-lub 18298  df-glb 18299  df-join 18300  df-meet 18301  df-p0 18377  df-lat 18384  df-clat 18451  df-oposet 38041  df-ol 38043  df-oml 38044  df-covers 38131  df-ats 38132  df-atl 38163  df-cvlat 38187  df-hlat 38216  df-psubsp 38369  df-pmap 38370  df-padd 38662
This theorem is referenced by:  dihmeetlem6  40175  dihjatc1  40177  dihmeetlem10N  40182
  Copyright terms: Public domain W3C validator