Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > dihmeetlem5 | Structured version Visualization version GIF version |
Description: Part of proof that isomorphism H is order-preserving . (Contributed by NM, 6-Apr-2014.) |
Ref | Expression |
---|---|
dihmeetlem5.b | ⊢ 𝐵 = (Base‘𝐾) |
dihmeetlem5.l | ⊢ ≤ = (le‘𝐾) |
dihmeetlem5.j | ⊢ ∨ = (join‘𝐾) |
dihmeetlem5.m | ⊢ ∧ = (meet‘𝐾) |
dihmeetlem5.a | ⊢ 𝐴 = (Atoms‘𝐾) |
Ref | Expression |
---|---|
dihmeetlem5 | ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → (𝑋 ∧ (𝑌 ∨ 𝑄)) = ((𝑋 ∧ 𝑌) ∨ 𝑄)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl1 1190 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → 𝐾 ∈ HL) | |
2 | simprl 768 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → 𝑄 ∈ 𝐴) | |
3 | simpl2 1191 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → 𝑋 ∈ 𝐵) | |
4 | simpl3 1192 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → 𝑌 ∈ 𝐵) | |
5 | simprr 770 | . . 3 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → 𝑄 ≤ 𝑋) | |
6 | dihmeetlem5.b | . . . 4 ⊢ 𝐵 = (Base‘𝐾) | |
7 | dihmeetlem5.l | . . . 4 ⊢ ≤ = (le‘𝐾) | |
8 | dihmeetlem5.j | . . . 4 ⊢ ∨ = (join‘𝐾) | |
9 | dihmeetlem5.m | . . . 4 ⊢ ∧ = (meet‘𝐾) | |
10 | dihmeetlem5.a | . . . 4 ⊢ 𝐴 = (Atoms‘𝐾) | |
11 | 6, 7, 8, 9, 10 | atmod2i1 38122 | . . 3 ⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑄 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ∨ 𝑄) = (𝑋 ∧ (𝑌 ∨ 𝑄))) |
12 | 1, 2, 3, 4, 5, 11 | syl131anc 1382 | . 2 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → ((𝑋 ∧ 𝑌) ∨ 𝑄) = (𝑋 ∧ (𝑌 ∨ 𝑄))) |
13 | 12 | eqcomd 2742 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → (𝑋 ∧ (𝑌 ∨ 𝑄)) = ((𝑋 ∧ 𝑌) ∨ 𝑄)) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1540 ∈ wcel 2105 class class class wbr 5089 ‘cfv 6473 (class class class)co 7329 Basecbs 17001 lecple 17058 joincjn 18118 meetcmee 18119 Atomscatm 37523 HLchlt 37610 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1912 ax-6 1970 ax-7 2010 ax-8 2107 ax-9 2115 ax-10 2136 ax-11 2153 ax-12 2170 ax-ext 2707 ax-rep 5226 ax-sep 5240 ax-nul 5247 ax-pow 5305 ax-pr 5369 ax-un 7642 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1781 df-nf 1785 df-sb 2067 df-mo 2538 df-eu 2567 df-clab 2714 df-cleq 2728 df-clel 2814 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3350 df-rab 3404 df-v 3443 df-sbc 3727 df-csb 3843 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4269 df-if 4473 df-pw 4548 df-sn 4573 df-pr 4575 df-op 4579 df-uni 4852 df-iun 4940 df-iin 4941 df-br 5090 df-opab 5152 df-mpt 5173 df-id 5512 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6425 df-fun 6475 df-fn 6476 df-f 6477 df-f1 6478 df-fo 6479 df-f1o 6480 df-fv 6481 df-riota 7286 df-ov 7332 df-oprab 7333 df-mpo 7334 df-1st 7891 df-2nd 7892 df-proset 18102 df-poset 18120 df-plt 18137 df-lub 18153 df-glb 18154 df-join 18155 df-meet 18156 df-p0 18232 df-lat 18239 df-clat 18306 df-oposet 37436 df-ol 37438 df-oml 37439 df-covers 37526 df-ats 37527 df-atl 37558 df-cvlat 37582 df-hlat 37611 df-psubsp 37764 df-pmap 37765 df-padd 38057 |
This theorem is referenced by: dihmeetlem6 39570 dihjatc1 39572 dihmeetlem10N 39577 |
Copyright terms: Public domain | W3C validator |