Proof of Theorem atmod2i1
| Step | Hyp | Ref
| Expression |
| 1 | | hllat 39365 |
. . . . 5
⊢ (𝐾 ∈ HL → 𝐾 ∈ Lat) |
| 2 | 1 | 3ad2ant1 1133 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ Lat) |
| 3 | | simp22 1207 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑋 ∈ 𝐵) |
| 4 | | simp23 1208 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑌 ∈ 𝐵) |
| 5 | | atmod.b |
. . . . 5
⊢ 𝐵 = (Base‘𝐾) |
| 6 | | atmod.m |
. . . . 5
⊢ ∧ =
(meet‘𝐾) |
| 7 | 5, 6 | latmcom 18509 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
| 8 | 2, 3, 4, 7 | syl3anc 1372 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ 𝑌) = (𝑌 ∧ 𝑋)) |
| 9 | 8 | oveq2d 7448 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = (𝑃 ∨ (𝑌 ∧ 𝑋))) |
| 10 | | simp21 1206 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐴) |
| 11 | | atmod.a |
. . . . 5
⊢ 𝐴 = (Atoms‘𝐾) |
| 12 | 5, 11 | atbase 39291 |
. . . 4
⊢ (𝑃 ∈ 𝐴 → 𝑃 ∈ 𝐵) |
| 13 | 10, 12 | syl 17 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑃 ∈ 𝐵) |
| 14 | 5, 6 | latmcl 18486 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 15 | 2, 3, 4, 14 | syl3anc 1372 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
| 16 | | atmod.j |
. . . 4
⊢ ∨ =
(join‘𝐾) |
| 17 | 5, 16 | latjcom 18493 |
. . 3
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑋 ∧ 𝑌) ∨ 𝑃)) |
| 18 | 2, 13, 15, 17 | syl3anc 1372 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑋 ∧ 𝑌)) = ((𝑋 ∧ 𝑌) ∨ 𝑃)) |
| 19 | 5, 16 | latjcl 18485 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑃 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑃 ∨ 𝑌) ∈ 𝐵) |
| 20 | 2, 13, 4, 19 | syl3anc 1372 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ 𝑌) ∈ 𝐵) |
| 21 | 5, 6 | latmcom 18509 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑃 ∨ 𝑌) ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) → ((𝑃 ∨ 𝑌) ∧ 𝑋) = (𝑋 ∧ (𝑃 ∨ 𝑌))) |
| 22 | 2, 20, 3, 21 | syl3anc 1372 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → ((𝑃 ∨ 𝑌) ∧ 𝑋) = (𝑋 ∧ (𝑃 ∨ 𝑌))) |
| 23 | | simp1 1136 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝐾 ∈ HL) |
| 24 | | simp3 1138 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → 𝑃 ≤ 𝑋) |
| 25 | | atmod.l |
. . . . 5
⊢ ≤ =
(le‘𝐾) |
| 26 | 5, 25, 16, 6, 11 | atmod1i1 39860 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑌 ∈ 𝐵 ∧ 𝑋 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑌 ∧ 𝑋)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
| 27 | 23, 10, 4, 3, 24, 26 | syl131anc 1384 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑌 ∧ 𝑋)) = ((𝑃 ∨ 𝑌) ∧ 𝑋)) |
| 28 | 5, 16 | latjcom 18493 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑌 ∈ 𝐵 ∧ 𝑃 ∈ 𝐵) → (𝑌 ∨ 𝑃) = (𝑃 ∨ 𝑌)) |
| 29 | 2, 4, 13, 28 | syl3anc 1372 |
. . . 4
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑌 ∨ 𝑃) = (𝑃 ∨ 𝑌)) |
| 30 | 29 | oveq2d 7448 |
. . 3
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑋 ∧ (𝑌 ∨ 𝑃)) = (𝑋 ∧ (𝑃 ∨ 𝑌))) |
| 31 | 22, 27, 30 | 3eqtr4d 2786 |
. 2
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → (𝑃 ∨ (𝑌 ∧ 𝑋)) = (𝑋 ∧ (𝑌 ∨ 𝑃))) |
| 32 | 9, 18, 31 | 3eqtr3d 2784 |
1
⊢ ((𝐾 ∈ HL ∧ (𝑃 ∈ 𝐴 ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ 𝑃 ≤ 𝑋) → ((𝑋 ∧ 𝑌) ∨ 𝑃) = (𝑋 ∧ (𝑌 ∨ 𝑃))) |