Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  atmod2i1 Structured version   Visualization version   GIF version

Theorem atmod2i1 37875
Description: Version of modular law pmod2iN 37863 that holds in a Hilbert lattice, when one element is an atom. (Contributed by NM, 14-May-2012.) (Revised by Mario Carneiro, 10-May-2013.)
Hypotheses
Ref Expression
atmod.b 𝐵 = (Base‘𝐾)
atmod.l = (le‘𝐾)
atmod.j = (join‘𝐾)
atmod.m = (meet‘𝐾)
atmod.a 𝐴 = (Atoms‘𝐾)
Assertion
Ref Expression
atmod2i1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → ((𝑋 𝑌) 𝑃) = (𝑋 (𝑌 𝑃)))

Proof of Theorem atmod2i1
StepHypRef Expression
1 hllat 37377 . . . . 5 (𝐾 ∈ HL → 𝐾 ∈ Lat)
213ad2ant1 1132 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → 𝐾 ∈ Lat)
3 simp22 1206 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → 𝑋𝐵)
4 simp23 1207 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → 𝑌𝐵)
5 atmod.b . . . . 5 𝐵 = (Base‘𝐾)
6 atmod.m . . . . 5 = (meet‘𝐾)
75, 6latmcom 18181 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) = (𝑌 𝑋))
82, 3, 4, 7syl3anc 1370 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → (𝑋 𝑌) = (𝑌 𝑋))
98oveq2d 7291 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → (𝑃 (𝑋 𝑌)) = (𝑃 (𝑌 𝑋)))
10 simp21 1205 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → 𝑃𝐴)
11 atmod.a . . . . 5 𝐴 = (Atoms‘𝐾)
125, 11atbase 37303 . . . 4 (𝑃𝐴𝑃𝐵)
1310, 12syl 17 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → 𝑃𝐵)
145, 6latmcl 18158 . . . 4 ((𝐾 ∈ Lat ∧ 𝑋𝐵𝑌𝐵) → (𝑋 𝑌) ∈ 𝐵)
152, 3, 4, 14syl3anc 1370 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → (𝑋 𝑌) ∈ 𝐵)
16 atmod.j . . . 4 = (join‘𝐾)
175, 16latjcom 18165 . . 3 ((𝐾 ∈ Lat ∧ 𝑃𝐵 ∧ (𝑋 𝑌) ∈ 𝐵) → (𝑃 (𝑋 𝑌)) = ((𝑋 𝑌) 𝑃))
182, 13, 15, 17syl3anc 1370 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → (𝑃 (𝑋 𝑌)) = ((𝑋 𝑌) 𝑃))
195, 16latjcl 18157 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑃𝐵𝑌𝐵) → (𝑃 𝑌) ∈ 𝐵)
202, 13, 4, 19syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → (𝑃 𝑌) ∈ 𝐵)
215, 6latmcom 18181 . . . 4 ((𝐾 ∈ Lat ∧ (𝑃 𝑌) ∈ 𝐵𝑋𝐵) → ((𝑃 𝑌) 𝑋) = (𝑋 (𝑃 𝑌)))
222, 20, 3, 21syl3anc 1370 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → ((𝑃 𝑌) 𝑋) = (𝑋 (𝑃 𝑌)))
23 simp1 1135 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → 𝐾 ∈ HL)
24 simp3 1137 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → 𝑃 𝑋)
25 atmod.l . . . . 5 = (le‘𝐾)
265, 25, 16, 6, 11atmod1i1 37871 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑌𝐵𝑋𝐵) ∧ 𝑃 𝑋) → (𝑃 (𝑌 𝑋)) = ((𝑃 𝑌) 𝑋))
2723, 10, 4, 3, 24, 26syl131anc 1382 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → (𝑃 (𝑌 𝑋)) = ((𝑃 𝑌) 𝑋))
285, 16latjcom 18165 . . . . 5 ((𝐾 ∈ Lat ∧ 𝑌𝐵𝑃𝐵) → (𝑌 𝑃) = (𝑃 𝑌))
292, 4, 13, 28syl3anc 1370 . . . 4 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → (𝑌 𝑃) = (𝑃 𝑌))
3029oveq2d 7291 . . 3 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → (𝑋 (𝑌 𝑃)) = (𝑋 (𝑃 𝑌)))
3122, 27, 303eqtr4d 2788 . 2 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → (𝑃 (𝑌 𝑋)) = (𝑋 (𝑌 𝑃)))
329, 18, 313eqtr3d 2786 1 ((𝐾 ∈ HL ∧ (𝑃𝐴𝑋𝐵𝑌𝐵) ∧ 𝑃 𝑋) → ((𝑋 𝑌) 𝑃) = (𝑋 (𝑌 𝑃)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  w3a 1086   = wceq 1539  wcel 2106   class class class wbr 5074  cfv 6433  (class class class)co 7275  Basecbs 16912  lecple 16969  joincjn 18029  meetcmee 18030  Latclat 18149  Atomscatm 37277  HLchlt 37364
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-1st 7831  df-2nd 7832  df-proset 18013  df-poset 18031  df-plt 18048  df-lub 18064  df-glb 18065  df-join 18066  df-meet 18067  df-p0 18143  df-lat 18150  df-clat 18217  df-oposet 37190  df-ol 37192  df-oml 37193  df-covers 37280  df-ats 37281  df-atl 37312  df-cvlat 37336  df-hlat 37365  df-psubsp 37517  df-pmap 37518  df-padd 37810
This theorem is referenced by:  lhpmod6i1  38053  trljat1  38180  trljat2  38181  cdlemc1  38205  cdlemc6  38210  cdleme16b  38293  cdleme20c  38325  cdleme20j  38332  cdleme22e  38358  cdleme22eALTN  38359  cdlemkid1  38936  dihmeetlem5  39322
  Copyright terms: Public domain W3C validator