Proof of Theorem dihjatc1
Step | Hyp | Ref
| Expression |
1 | | simp11 1201 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) |
2 | | simp11l 1282 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝐾 ∈ HL) |
3 | 2 | hllatd 37305 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝐾 ∈ Lat) |
4 | | simp12 1202 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝑋 ∈ 𝐵) |
5 | | simp13 1203 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝑌 ∈ 𝐵) |
6 | | dihjatc1.b |
. . . . . 6
⊢ 𝐵 = (Base‘𝐾) |
7 | | dihjatc1.m |
. . . . . 6
⊢ ∧ =
(meet‘𝐾) |
8 | 6, 7 | latmcl 18073 |
. . . . 5
⊢ ((𝐾 ∈ Lat ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
9 | 3, 4, 5, 8 | syl3anc 1369 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝑋 ∧ 𝑌) ∈ 𝐵) |
10 | | simp2l 1197 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝑄 ∈ 𝐴) |
11 | | dihjatc1.a |
. . . . . 6
⊢ 𝐴 = (Atoms‘𝐾) |
12 | 6, 11 | atbase 37230 |
. . . . 5
⊢ (𝑄 ∈ 𝐴 → 𝑄 ∈ 𝐵) |
13 | 10, 12 | syl 17 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝑄 ∈ 𝐵) |
14 | | dihjatc1.j |
. . . . 5
⊢ ∨ =
(join‘𝐾) |
15 | 6, 14 | latjcl 18072 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → ((𝑋 ∧ 𝑌) ∨ 𝑄) ∈ 𝐵) |
16 | 3, 9, 13, 15 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ((𝑋 ∧ 𝑌) ∨ 𝑄) ∈ 𝐵) |
17 | | simp2 1135 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) |
18 | | simp3l 1199 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝑄 ≤ 𝑋) |
19 | | dihjatc1.l |
. . . . . 6
⊢ ≤ =
(le‘𝐾) |
20 | | dihjatc1.h |
. . . . . 6
⊢ 𝐻 = (LHyp‘𝐾) |
21 | 6, 19, 20, 14, 7, 11 | dihmeetlem6 39250 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ 𝑋)) → ¬ (𝑋 ∧ (𝑌 ∨ 𝑄)) ≤ 𝑊) |
22 | 1, 4, 5, 17, 18, 21 | syl32anc 1376 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ¬ (𝑋 ∧ (𝑌 ∨ 𝑄)) ≤ 𝑊) |
23 | 6, 19, 14, 7, 11 | dihmeetlem5 39249 |
. . . . . 6
⊢ (((𝐾 ∈ HL ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ 𝑄 ≤ 𝑋)) → (𝑋 ∧ (𝑌 ∨ 𝑄)) = ((𝑋 ∧ 𝑌) ∨ 𝑄)) |
24 | 2, 4, 5, 10, 18, 23 | syl32anc 1376 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝑋 ∧ (𝑌 ∨ 𝑄)) = ((𝑋 ∧ 𝑌) ∨ 𝑄)) |
25 | 24 | breq1d 5080 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ((𝑋 ∧ (𝑌 ∨ 𝑄)) ≤ 𝑊 ↔ ((𝑋 ∧ 𝑌) ∨ 𝑄) ≤ 𝑊)) |
26 | 22, 25 | mtbid 323 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ¬ ((𝑋 ∧ 𝑌) ∨ 𝑄) ≤ 𝑊) |
27 | 6, 19, 14 | latlej2 18082 |
. . . 4
⊢ ((𝐾 ∈ Lat ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑄 ∈ 𝐵) → 𝑄 ≤ ((𝑋 ∧ 𝑌) ∨ 𝑄)) |
28 | 3, 9, 13, 27 | syl3anc 1369 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝑄 ≤ ((𝑋 ∧ 𝑌) ∨ 𝑄)) |
29 | | dihjatc1.i |
. . . 4
⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
30 | | dihjatc1.u |
. . . 4
⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
31 | | dihjatc1.s |
. . . 4
⊢ ⊕ =
(LSSum‘𝑈) |
32 | 6, 19, 14, 7, 11, 20, 29, 30, 31 | dihvalcq2 39188 |
. . 3
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (((𝑋 ∧ 𝑌) ∨ 𝑄) ∈ 𝐵 ∧ ¬ ((𝑋 ∧ 𝑌) ∨ 𝑄) ≤ 𝑊) ∧ ((𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ 𝑄 ≤ ((𝑋 ∧ 𝑌) ∨ 𝑄))) → (𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑄)) = ((𝐼‘𝑄) ⊕ (𝐼‘(((𝑋 ∧ 𝑌) ∨ 𝑄) ∧ 𝑊)))) |
33 | 1, 16, 26, 17, 28, 32 | syl122anc 1377 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑄)) = ((𝐼‘𝑄) ⊕ (𝐼‘(((𝑋 ∧ 𝑌) ∨ 𝑄) ∧ 𝑊)))) |
34 | | eqid 2738 |
. . . . . . . 8
⊢
(0.‘𝐾) =
(0.‘𝐾) |
35 | 19, 7, 34, 11, 20 | lhpmat 37971 |
. . . . . . 7
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → (𝑄 ∧ 𝑊) = (0.‘𝐾)) |
36 | 1, 17, 35 | syl2anc 583 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝑄 ∧ 𝑊) = (0.‘𝐾)) |
37 | 36 | oveq2d 7271 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ((𝑋 ∧ 𝑌) ∨ (𝑄 ∧ 𝑊)) = ((𝑋 ∧ 𝑌) ∨ (0.‘𝐾))) |
38 | | simp11r 1283 |
. . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝑊 ∈ 𝐻) |
39 | 6, 20 | lhpbase 37939 |
. . . . . . 7
⊢ (𝑊 ∈ 𝐻 → 𝑊 ∈ 𝐵) |
40 | 38, 39 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝑊 ∈ 𝐵) |
41 | | simp3r 1200 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝑋 ∧ 𝑌) ≤ 𝑊) |
42 | 6, 19, 14, 7, 11 | atmod1i2 37800 |
. . . . . 6
⊢ ((𝐾 ∈ HL ∧ (𝑄 ∈ 𝐴 ∧ (𝑋 ∧ 𝑌) ∈ 𝐵 ∧ 𝑊 ∈ 𝐵) ∧ (𝑋 ∧ 𝑌) ≤ 𝑊) → ((𝑋 ∧ 𝑌) ∨ (𝑄 ∧ 𝑊)) = (((𝑋 ∧ 𝑌) ∨ 𝑄) ∧ 𝑊)) |
43 | 2, 10, 9, 40, 41, 42 | syl131anc 1381 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ((𝑋 ∧ 𝑌) ∨ (𝑄 ∧ 𝑊)) = (((𝑋 ∧ 𝑌) ∨ 𝑄) ∧ 𝑊)) |
44 | | hlol 37302 |
. . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) |
45 | 2, 44 | syl 17 |
. . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → 𝐾 ∈ OL) |
46 | 6, 14, 34 | olj01 37166 |
. . . . . 6
⊢ ((𝐾 ∈ OL ∧ (𝑋 ∧ 𝑌) ∈ 𝐵) → ((𝑋 ∧ 𝑌) ∨ (0.‘𝐾)) = (𝑋 ∧ 𝑌)) |
47 | 45, 9, 46 | syl2anc 583 |
. . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ((𝑋 ∧ 𝑌) ∨ (0.‘𝐾)) = (𝑋 ∧ 𝑌)) |
48 | 37, 43, 47 | 3eqtr3d 2786 |
. . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (((𝑋 ∧ 𝑌) ∨ 𝑄) ∧ 𝑊) = (𝑋 ∧ 𝑌)) |
49 | 48 | fveq2d 6760 |
. . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐼‘(((𝑋 ∧ 𝑌) ∨ 𝑄) ∧ 𝑊)) = (𝐼‘(𝑋 ∧ 𝑌))) |
50 | 49 | oveq2d 7271 |
. 2
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → ((𝐼‘𝑄) ⊕ (𝐼‘(((𝑋 ∧ 𝑌) ∨ 𝑄) ∧ 𝑊))) = ((𝐼‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑌)))) |
51 | 33, 50 | eqtrd 2778 |
1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝐵) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊) ∧ (𝑄 ≤ 𝑋 ∧ (𝑋 ∧ 𝑌) ≤ 𝑊)) → (𝐼‘((𝑋 ∧ 𝑌) ∨ 𝑄)) = ((𝐼‘𝑄) ⊕ (𝐼‘(𝑋 ∧ 𝑌)))) |