| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > dihmeetlem4N | Structured version Visualization version GIF version | ||
| Description: Lemma for isomorphism H of a lattice meet. (Contributed by NM, 30-Mar-2014.) (New usage is discouraged.) |
| Ref | Expression |
|---|---|
| dihmeetlem4.b | ⊢ 𝐵 = (Base‘𝐾) |
| dihmeetlem4.l | ⊢ ≤ = (le‘𝐾) |
| dihmeetlem4.m | ⊢ ∧ = (meet‘𝐾) |
| dihmeetlem4.a | ⊢ 𝐴 = (Atoms‘𝐾) |
| dihmeetlem4.h | ⊢ 𝐻 = (LHyp‘𝐾) |
| dihmeetlem4.i | ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) |
| dihmeetlem4.u | ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) |
| dihmeetlem4.z | ⊢ 0 = (0g‘𝑈) |
| Ref | Expression |
|---|---|
| dihmeetlem4N | ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) = { 0 }) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dihmeetlem4.b | . 2 ⊢ 𝐵 = (Base‘𝐾) | |
| 2 | dihmeetlem4.l | . 2 ⊢ ≤ = (le‘𝐾) | |
| 3 | dihmeetlem4.m | . 2 ⊢ ∧ = (meet‘𝐾) | |
| 4 | dihmeetlem4.a | . 2 ⊢ 𝐴 = (Atoms‘𝐾) | |
| 5 | dihmeetlem4.h | . 2 ⊢ 𝐻 = (LHyp‘𝐾) | |
| 6 | dihmeetlem4.i | . 2 ⊢ 𝐼 = ((DIsoH‘𝐾)‘𝑊) | |
| 7 | dihmeetlem4.u | . 2 ⊢ 𝑈 = ((DVecH‘𝐾)‘𝑊) | |
| 8 | dihmeetlem4.z | . 2 ⊢ 0 = (0g‘𝑈) | |
| 9 | eqid 2735 | . 2 ⊢ (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) = (℩𝑔 ∈ ((LTrn‘𝐾)‘𝑊)(𝑔‘((oc‘𝐾)‘𝑊)) = 𝑄) | |
| 10 | eqid 2735 | . 2 ⊢ ((oc‘𝐾)‘𝑊) = ((oc‘𝐾)‘𝑊) | |
| 11 | eqid 2735 | . 2 ⊢ ((LTrn‘𝐾)‘𝑊) = ((LTrn‘𝐾)‘𝑊) | |
| 12 | eqid 2735 | . 2 ⊢ ((trL‘𝐾)‘𝑊) = ((trL‘𝐾)‘𝑊) | |
| 13 | eqid 2735 | . 2 ⊢ ((TEndo‘𝐾)‘𝑊) = ((TEndo‘𝐾)‘𝑊) | |
| 14 | eqid 2735 | . 2 ⊢ (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) = (ℎ ∈ ((LTrn‘𝐾)‘𝑊) ↦ ( I ↾ 𝐵)) | |
| 15 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14 | dihmeetlem4preN 41271 | 1 ⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑋 ∈ 𝐵 ∧ ¬ 𝑋 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) → ((𝐼‘𝑄) ∩ (𝐼‘(𝑋 ∧ 𝑊))) = { 0 }) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2108 ∩ cin 3925 {csn 4601 class class class wbr 5119 ↦ cmpt 5201 I cid 5547 ↾ cres 5656 ‘cfv 6530 ℩crio 7359 (class class class)co 7403 Basecbs 17226 lecple 17276 occoc 17277 0gc0g 17451 meetcmee 18322 Atomscatm 39227 HLchlt 39314 LHypclh 39949 LTrncltrn 40066 trLctrl 40123 TEndoctendo 40717 DVecHcdvh 41043 DIsoHcdih 41193 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7727 ax-cnex 11183 ax-resscn 11184 ax-1cn 11185 ax-icn 11186 ax-addcl 11187 ax-addrcl 11188 ax-mulcl 11189 ax-mulrcl 11190 ax-mulcom 11191 ax-addass 11192 ax-mulass 11193 ax-distr 11194 ax-i2m1 11195 ax-1ne0 11196 ax-1rid 11197 ax-rnegex 11198 ax-rrecex 11199 ax-cnre 11200 ax-pre-lttri 11201 ax-pre-lttrn 11202 ax-pre-ltadd 11203 ax-pre-mulgt0 11204 ax-riotaBAD 38917 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-rmo 3359 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-tp 4606 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-iin 4970 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6483 df-fun 6532 df-fn 6533 df-f 6534 df-f1 6535 df-fo 6536 df-f1o 6537 df-fv 6538 df-riota 7360 df-ov 7406 df-oprab 7407 df-mpo 7408 df-om 7860 df-1st 7986 df-2nd 7987 df-tpos 8223 df-undef 8270 df-frecs 8278 df-wrecs 8309 df-recs 8383 df-rdg 8422 df-1o 8478 df-er 8717 df-map 8840 df-en 8958 df-dom 8959 df-sdom 8960 df-fin 8961 df-pnf 11269 df-mnf 11270 df-xr 11271 df-ltxr 11272 df-le 11273 df-sub 11466 df-neg 11467 df-nn 12239 df-2 12301 df-3 12302 df-4 12303 df-5 12304 df-6 12305 df-n0 12500 df-z 12587 df-uz 12851 df-fz 13523 df-struct 17164 df-sets 17181 df-slot 17199 df-ndx 17211 df-base 17227 df-ress 17250 df-plusg 17282 df-mulr 17283 df-sca 17285 df-vsca 17286 df-0g 17453 df-proset 18304 df-poset 18323 df-plt 18338 df-lub 18354 df-glb 18355 df-join 18356 df-meet 18357 df-p0 18433 df-p1 18434 df-lat 18440 df-clat 18507 df-mgm 18616 df-sgrp 18695 df-mnd 18711 df-submnd 18760 df-grp 18917 df-minusg 18918 df-sbg 18919 df-subg 19104 df-cntz 19298 df-lsm 19615 df-cmn 19761 df-abl 19762 df-mgp 20099 df-rng 20111 df-ur 20140 df-ring 20193 df-oppr 20295 df-dvdsr 20315 df-unit 20316 df-invr 20346 df-dvr 20359 df-drng 20689 df-lmod 20817 df-lss 20887 df-lsp 20927 df-lvec 21059 df-oposet 39140 df-ol 39142 df-oml 39143 df-covers 39230 df-ats 39231 df-atl 39262 df-cvlat 39286 df-hlat 39315 df-llines 39463 df-lplanes 39464 df-lvols 39465 df-lines 39466 df-psubsp 39468 df-pmap 39469 df-padd 39761 df-lhyp 39953 df-laut 39954 df-ldil 40069 df-ltrn 40070 df-trl 40124 df-tendo 40720 df-edring 40722 df-disoa 40994 df-dvech 41044 df-dib 41104 df-dic 41138 df-dih 41194 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |