MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvgt0lem1 Structured version   Visualization version   GIF version

Theorem dvgt0lem1 25959
Description: Lemma for dvgt0 25961 and dvlt0 25962. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvgt0.a (𝜑𝐴 ∈ ℝ)
dvgt0.b (𝜑𝐵 ∈ ℝ)
dvgt0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvgt0lem.d (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
Assertion
Ref Expression
dvgt0lem1 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ 𝑆)

Proof of Theorem dvgt0lem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 13447 . . . . . . 7 (𝐴[,]𝐵) ⊆ ℝ*
2 simplrl 776 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ (𝐴[,]𝐵))
31, 2sselid 3956 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ*)
4 simplrr 777 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ (𝐴[,]𝐵))
51, 4sselid 3956 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ*)
6 dvgt0.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
7 dvgt0.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
8 iccssre 13446 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
96, 7, 8syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
109ad2antrr 726 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐴[,]𝐵) ⊆ ℝ)
1110, 2sseldd 3959 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ)
1210, 4sseldd 3959 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ)
13 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
1411, 12, 13ltled 11383 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
15 ubicc2 13482 . . . . . 6 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
163, 5, 14, 15syl3anc 1373 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
1716fvresd 6896 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) = (𝐹𝑌))
18 lbicc2 13481 . . . . . 6 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
193, 5, 14, 18syl3anc 1373 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
2019fvresd 6896 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋) = (𝐹𝑋))
2117, 20oveq12d 7423 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) = ((𝐹𝑌) − (𝐹𝑋)))
2221oveq1d 7420 . 2 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) = (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)))
23 iccss2 13434 . . . . . 6 ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝑋[,]𝑌) ⊆ (𝐴[,]𝐵))
2423ad2antlr 727 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ (𝐴[,]𝐵))
25 dvgt0.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
2625ad2antrr 726 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
27 rescncf 24841 . . . . 5 ((𝑋[,]𝑌) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ)))
2824, 26, 27sylc 65 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐹 ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
29 dvgt0lem.d . . . . . . . 8 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
3029ad2antrr 726 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
316ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴 ∈ ℝ)
3231rexrd 11285 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴 ∈ ℝ*)
337ad2antrr 726 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐵 ∈ ℝ)
34 elicc2 13428 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
3531, 33, 34syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
362, 35mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
3736simp2d 1143 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴𝑋)
38 iooss1 13397 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
3932, 37, 38syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
4033rexrd 11285 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐵 ∈ ℝ*)
41 elicc2 13428 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
4231, 33, 41syl2anc 584 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
434, 42mpbid 232 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
4443simp3d 1144 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
45 iooss2 13398 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
4640, 44, 45syl2anc 584 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
4739, 46sstrd 3969 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
4830, 47fssresd 6745 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶𝑆)
49 ax-resscn 11186 . . . . . . . . . 10 ℝ ⊆ ℂ
5049a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ℝ ⊆ ℂ)
51 cncff 24837 . . . . . . . . . . . 12 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
5225, 51syl 17 . . . . . . . . . . 11 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
5352ad2antrr 726 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
54 fss 6722 . . . . . . . . . 10 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
5553, 49, 54sylancl 586 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
56 iccssre 13446 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ)
5711, 12, 56syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ ℝ)
58 eqid 2735 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
59 tgioo4 24744 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6058, 59dvres 25864 . . . . . . . . 9 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝑋[,]𝑌) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌))))
6150, 55, 10, 57, 60syl22anc 838 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌))))
62 iccntr 24761 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
6311, 12, 62syl2anc 584 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
6463reseq2d 5966 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)))
6561, 64eqtrd 2770 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)))
6665feq1d 6690 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D (𝐹 ↾ (𝑋[,]𝑌))):(𝑋(,)𝑌)⟶𝑆 ↔ ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶𝑆))
6748, 66mpbird 257 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))):(𝑋(,)𝑌)⟶𝑆)
6867fdmd 6716 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → dom (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = (𝑋(,)𝑌))
6911, 12, 13, 28, 68mvth 25949 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ∃𝑧 ∈ (𝑋(,)𝑌)((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)))
7067ffvelcdmda 7074 . . . . 5 ((((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) ∧ 𝑧 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) ∈ 𝑆)
71 eleq1 2822 . . . . 5 (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) → (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) ∈ 𝑆 ↔ ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆))
7270, 71syl5ibcom 245 . . . 4 ((((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) ∧ 𝑧 ∈ (𝑋(,)𝑌)) → (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆))
7372rexlimdva 3141 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (∃𝑧 ∈ (𝑋(,)𝑌)((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆))
7469, 73mpd 15 . 2 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆)
7522, 74eqeltrrd 2835 1 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1540  wcel 2108  wrex 3060  wss 3926   class class class wbr 5119  ran crn 5655  cres 5656  wf 6527  cfv 6531  (class class class)co 7405  cc 11127  cr 11128  *cxr 11268   < clt 11269  cle 11270  cmin 11466   / cdiv 11894  (,)cioo 13362  [,]cicc 13365  TopOpenctopn 17435  topGenctg 17451  fldccnfld 21315  intcnt 22955  cnccncf 24820   D cdv 25816
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206  ax-pre-sup 11207  ax-addf 11208
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-fi 9423  df-sup 9454  df-inf 9455  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-div 11895  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-q 12965  df-rp 13009  df-xneg 13128  df-xadd 13129  df-xmul 13130  df-ioo 13366  df-ico 13368  df-icc 13369  df-fz 13525  df-fzo 13672  df-seq 14020  df-exp 14080  df-hash 14349  df-cj 15118  df-re 15119  df-im 15120  df-sqrt 15254  df-abs 15255  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-starv 17286  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-unif 17294  df-hom 17295  df-cco 17296  df-rest 17436  df-topn 17437  df-0g 17455  df-gsum 17456  df-topgen 17457  df-pt 17458  df-prds 17461  df-xrs 17516  df-qtop 17521  df-imas 17522  df-xps 17524  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-submnd 18762  df-mulg 19051  df-cntz 19300  df-cmn 19763  df-psmet 21307  df-xmet 21308  df-met 21309  df-bl 21310  df-mopn 21311  df-fbas 21312  df-fg 21313  df-cnfld 21316  df-top 22832  df-topon 22849  df-topsp 22871  df-bases 22884  df-cld 22957  df-ntr 22958  df-cls 22959  df-nei 23036  df-lp 23074  df-perf 23075  df-cn 23165  df-cnp 23166  df-haus 23253  df-cmp 23325  df-tx 23500  df-hmeo 23693  df-fil 23784  df-fm 23876  df-flim 23877  df-flf 23878  df-xms 24259  df-ms 24260  df-tms 24261  df-cncf 24822  df-limc 25819  df-dv 25820
This theorem is referenced by:  dvgt0  25961  dvlt0  25962  dvge0  25963
  Copyright terms: Public domain W3C validator