MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dvgt0lem1 Structured version   Visualization version   GIF version

Theorem dvgt0lem1 25071
Description: Lemma for dvgt0 25073 and dvlt0 25074. (Contributed by Mario Carneiro, 19-Feb-2015.)
Hypotheses
Ref Expression
dvgt0.a (𝜑𝐴 ∈ ℝ)
dvgt0.b (𝜑𝐵 ∈ ℝ)
dvgt0.f (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
dvgt0lem.d (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
Assertion
Ref Expression
dvgt0lem1 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ 𝑆)

Proof of Theorem dvgt0lem1
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 iccssxr 13091 . . . . . . 7 (𝐴[,]𝐵) ⊆ ℝ*
2 simplrl 773 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ (𝐴[,]𝐵))
31, 2sselid 3915 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ*)
4 simplrr 774 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ (𝐴[,]𝐵))
51, 4sselid 3915 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ*)
6 dvgt0.a . . . . . . . . . 10 (𝜑𝐴 ∈ ℝ)
7 dvgt0.b . . . . . . . . . 10 (𝜑𝐵 ∈ ℝ)
8 iccssre 13090 . . . . . . . . . 10 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ)
96, 7, 8syl2anc 583 . . . . . . . . 9 (𝜑 → (𝐴[,]𝐵) ⊆ ℝ)
109ad2antrr 722 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐴[,]𝐵) ⊆ ℝ)
1110, 2sseldd 3918 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ)
1210, 4sseldd 3918 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ)
13 simpr 484 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌)
1411, 12, 13ltled 11053 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋𝑌)
15 ubicc2 13126 . . . . . 6 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
163, 5, 14, 15syl3anc 1369 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ (𝑋[,]𝑌))
1716fvresd 6776 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) = (𝐹𝑌))
18 lbicc2 13125 . . . . . 6 ((𝑋 ∈ ℝ*𝑌 ∈ ℝ*𝑋𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
193, 5, 14, 18syl3anc 1369 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ (𝑋[,]𝑌))
2019fvresd 6776 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋) = (𝐹𝑋))
2117, 20oveq12d 7273 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) = ((𝐹𝑌) − (𝐹𝑋)))
2221oveq1d 7270 . 2 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) = (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)))
23 iccss2 13079 . . . . . 6 ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝑋[,]𝑌) ⊆ (𝐴[,]𝐵))
2423ad2antlr 723 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ (𝐴[,]𝐵))
25 dvgt0.f . . . . . 6 (𝜑𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
2625ad2antrr 722 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ))
27 rescncf 23966 . . . . 5 ((𝑋[,]𝑌) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ)))
2824, 26, 27sylc 65 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐹 ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ))
29 dvgt0lem.d . . . . . . . 8 (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
3029ad2antrr 722 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆)
316ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴 ∈ ℝ)
3231rexrd 10956 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴 ∈ ℝ*)
337ad2antrr 722 . . . . . . . . . . . 12 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐵 ∈ ℝ)
34 elicc2 13073 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
3531, 33, 34syl2anc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵)))
362, 35mpbid 231 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋 ∈ ℝ ∧ 𝐴𝑋𝑋𝐵))
3736simp2d 1141 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴𝑋)
38 iooss1 13043 . . . . . . . . 9 ((𝐴 ∈ ℝ*𝐴𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
3932, 37, 38syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌))
4033rexrd 10956 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐵 ∈ ℝ*)
41 elicc2 13073 . . . . . . . . . . . 12 ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
4231, 33, 41syl2anc 583 . . . . . . . . . . 11 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵)))
434, 42mpbid 231 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑌 ∈ ℝ ∧ 𝐴𝑌𝑌𝐵))
4443simp3d 1142 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌𝐵)
45 iooss2 13044 . . . . . . . . 9 ((𝐵 ∈ ℝ*𝑌𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
4640, 44, 45syl2anc 583 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵))
4739, 46sstrd 3927 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵))
4830, 47fssresd 6625 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶𝑆)
49 ax-resscn 10859 . . . . . . . . . 10 ℝ ⊆ ℂ
5049a1i 11 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ℝ ⊆ ℂ)
51 cncff 23962 . . . . . . . . . . . 12 (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
5225, 51syl 17 . . . . . . . . . . 11 (𝜑𝐹:(𝐴[,]𝐵)⟶ℝ)
5352ad2antrr 722 . . . . . . . . . 10 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹:(𝐴[,]𝐵)⟶ℝ)
54 fss 6601 . . . . . . . . . 10 ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆ ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
5553, 49, 54sylancl 585 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹:(𝐴[,]𝐵)⟶ℂ)
56 iccssre 13090 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ)
5711, 12, 56syl2anc 583 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ ℝ)
58 eqid 2738 . . . . . . . . . 10 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
5958tgioo2 23872 . . . . . . . . . 10 (topGen‘ran (,)) = ((TopOpen‘ℂfld) ↾t ℝ)
6058, 59dvres 24980 . . . . . . . . 9 (((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝑋[,]𝑌) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌))))
6150, 55, 10, 57, 60syl22anc 835 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌))))
62 iccntr 23890 . . . . . . . . . 10 ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
6311, 12, 62syl2anc 583 . . . . . . . . 9 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌))
6463reseq2d 5880 . . . . . . . 8 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)))
6561, 64eqtrd 2778 . . . . . . 7 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)))
6665feq1d 6569 . . . . . 6 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D (𝐹 ↾ (𝑋[,]𝑌))):(𝑋(,)𝑌)⟶𝑆 ↔ ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶𝑆))
6748, 66mpbird 256 . . . . 5 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))):(𝑋(,)𝑌)⟶𝑆)
6867fdmd 6595 . . . 4 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → dom (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = (𝑋(,)𝑌))
6911, 12, 13, 28, 68mvth 25061 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ∃𝑧 ∈ (𝑋(,)𝑌)((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)))
7067ffvelrnda 6943 . . . . 5 ((((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) ∧ 𝑧 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) ∈ 𝑆)
71 eleq1 2826 . . . . 5 (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) → (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) ∈ 𝑆 ↔ ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆))
7270, 71syl5ibcom 244 . . . 4 ((((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) ∧ 𝑧 ∈ (𝑋(,)𝑌)) → (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆))
7372rexlimdva 3212 . . 3 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (∃𝑧 ∈ (𝑋(,)𝑌)((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆))
7469, 73mpd 15 . 2 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌𝑋)) ∈ 𝑆)
7522, 74eqeltrrd 2840 1 (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹𝑌) − (𝐹𝑋)) / (𝑌𝑋)) ∈ 𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wrex 3064  wss 3883   class class class wbr 5070  ran crn 5581  cres 5582  wf 6414  cfv 6418  (class class class)co 7255  cc 10800  cr 10801  *cxr 10939   < clt 10940  cle 10941  cmin 11135   / cdiv 11562  (,)cioo 13008  [,]cicc 13011  TopOpenctopn 17049  topGenctg 17065  fldccnfld 20510  intcnt 22076  cnccncf 23945   D cdv 24932
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880  ax-addf 10881  ax-mulf 10882
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-supp 7949  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-fsupp 9059  df-fi 9100  df-sup 9131  df-inf 9132  df-oi 9199  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-q 12618  df-rp 12660  df-xneg 12777  df-xadd 12778  df-xmul 12779  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-struct 16776  df-sets 16793  df-slot 16811  df-ndx 16823  df-base 16841  df-ress 16868  df-plusg 16901  df-mulr 16902  df-starv 16903  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-unif 16911  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-0g 17069  df-gsum 17070  df-topgen 17071  df-pt 17072  df-prds 17075  df-xrs 17130  df-qtop 17135  df-imas 17136  df-xps 17138  df-mre 17212  df-mrc 17213  df-acs 17215  df-mgm 18241  df-sgrp 18290  df-mnd 18301  df-submnd 18346  df-mulg 18616  df-cntz 18838  df-cmn 19303  df-psmet 20502  df-xmet 20503  df-met 20504  df-bl 20505  df-mopn 20506  df-fbas 20507  df-fg 20508  df-cnfld 20511  df-top 21951  df-topon 21968  df-topsp 21990  df-bases 22004  df-cld 22078  df-ntr 22079  df-cls 22080  df-nei 22157  df-lp 22195  df-perf 22196  df-cn 22286  df-cnp 22287  df-haus 22374  df-cmp 22446  df-tx 22621  df-hmeo 22814  df-fil 22905  df-fm 22997  df-flim 22998  df-flf 22999  df-xms 23381  df-ms 23382  df-tms 23383  df-cncf 23947  df-limc 24935  df-dv 24936
This theorem is referenced by:  dvgt0  25073  dvlt0  25074  dvge0  25075
  Copyright terms: Public domain W3C validator