| Step | Hyp | Ref
| Expression |
| 1 | | iccssxr 13470 |
. . . . . . 7
⊢ (𝐴[,]𝐵) ⊆
ℝ* |
| 2 | | simplrl 777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ (𝐴[,]𝐵)) |
| 3 | 1, 2 | sselid 3981 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈
ℝ*) |
| 4 | | simplrr 778 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ (𝐴[,]𝐵)) |
| 5 | 1, 4 | sselid 3981 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈
ℝ*) |
| 6 | | dvgt0.a |
. . . . . . . . . 10
⊢ (𝜑 → 𝐴 ∈ ℝ) |
| 7 | | dvgt0.b |
. . . . . . . . . 10
⊢ (𝜑 → 𝐵 ∈ ℝ) |
| 8 | | iccssre 13469 |
. . . . . . . . . 10
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝐴[,]𝐵) ⊆ ℝ) |
| 9 | 6, 7, 8 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐴[,]𝐵) ⊆ ℝ) |
| 10 | 9 | ad2antrr 726 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐴[,]𝐵) ⊆ ℝ) |
| 11 | 10, 2 | sseldd 3984 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ ℝ) |
| 12 | 10, 4 | sseldd 3984 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ ℝ) |
| 13 | | simpr 484 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 < 𝑌) |
| 14 | 11, 12, 13 | ltled 11409 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ≤ 𝑌) |
| 15 | | ubicc2 13505 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ*
∧ 𝑌 ∈
ℝ* ∧ 𝑋
≤ 𝑌) → 𝑌 ∈ (𝑋[,]𝑌)) |
| 16 | 3, 5, 14, 15 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ∈ (𝑋[,]𝑌)) |
| 17 | 16 | fvresd 6926 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) = (𝐹‘𝑌)) |
| 18 | | lbicc2 13504 |
. . . . . 6
⊢ ((𝑋 ∈ ℝ*
∧ 𝑌 ∈
ℝ* ∧ 𝑋
≤ 𝑌) → 𝑋 ∈ (𝑋[,]𝑌)) |
| 19 | 3, 5, 14, 18 | syl3anc 1373 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑋 ∈ (𝑋[,]𝑌)) |
| 20 | 19 | fvresd 6926 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋) = (𝐹‘𝑋)) |
| 21 | 17, 20 | oveq12d 7449 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) = ((𝐹‘𝑌) − (𝐹‘𝑋))) |
| 22 | 21 | oveq1d 7446 |
. 2
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌 − 𝑋)) = (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋))) |
| 23 | | iccss2 13458 |
. . . . . 6
⊢ ((𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵)) → (𝑋[,]𝑌) ⊆ (𝐴[,]𝐵)) |
| 24 | 23 | ad2antlr 727 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ (𝐴[,]𝐵)) |
| 25 | | dvgt0.f |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 26 | 25 | ad2antrr 726 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ)) |
| 27 | | rescncf 24923 |
. . . . 5
⊢ ((𝑋[,]𝑌) ⊆ (𝐴[,]𝐵) → (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → (𝐹 ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ))) |
| 28 | 24, 26, 27 | sylc 65 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐹 ↾ (𝑋[,]𝑌)) ∈ ((𝑋[,]𝑌)–cn→ℝ)) |
| 29 | | dvgt0lem.d |
. . . . . . . 8
⊢ (𝜑 → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆) |
| 30 | 29 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D 𝐹):(𝐴(,)𝐵)⟶𝑆) |
| 31 | 6 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴 ∈ ℝ) |
| 32 | 31 | rexrd 11311 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴 ∈
ℝ*) |
| 33 | 7 | ad2antrr 726 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐵 ∈ ℝ) |
| 34 | | elicc2 13452 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) |
| 35 | 31, 33, 34 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋 ∈ (𝐴[,]𝐵) ↔ (𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵))) |
| 36 | 2, 35 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋 ∈ ℝ ∧ 𝐴 ≤ 𝑋 ∧ 𝑋 ≤ 𝐵)) |
| 37 | 36 | simp2d 1144 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐴 ≤ 𝑋) |
| 38 | | iooss1 13422 |
. . . . . . . . 9
⊢ ((𝐴 ∈ ℝ*
∧ 𝐴 ≤ 𝑋) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌)) |
| 39 | 32, 37, 38 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝑌)) |
| 40 | 33 | rexrd 11311 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐵 ∈
ℝ*) |
| 41 | | elicc2 13452 |
. . . . . . . . . . . 12
⊢ ((𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵))) |
| 42 | 31, 33, 41 | syl2anc 584 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑌 ∈ (𝐴[,]𝐵) ↔ (𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵))) |
| 43 | 4, 42 | mpbid 232 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑌 ∈ ℝ ∧ 𝐴 ≤ 𝑌 ∧ 𝑌 ≤ 𝐵)) |
| 44 | 43 | simp3d 1145 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝑌 ≤ 𝐵) |
| 45 | | iooss2 13423 |
. . . . . . . . 9
⊢ ((𝐵 ∈ ℝ*
∧ 𝑌 ≤ 𝐵) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵)) |
| 46 | 40, 44, 45 | syl2anc 584 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝐴(,)𝑌) ⊆ (𝐴(,)𝐵)) |
| 47 | 39, 46 | sstrd 3994 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋(,)𝑌) ⊆ (𝐴(,)𝐵)) |
| 48 | 30, 47 | fssresd 6775 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶𝑆) |
| 49 | | ax-resscn 11212 |
. . . . . . . . . 10
⊢ ℝ
⊆ ℂ |
| 50 | 49 | a1i 11 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ℝ ⊆
ℂ) |
| 51 | | cncff 24919 |
. . . . . . . . . . . 12
⊢ (𝐹 ∈ ((𝐴[,]𝐵)–cn→ℝ) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 52 | 25, 51 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 53 | 52 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹:(𝐴[,]𝐵)⟶ℝ) |
| 54 | | fss 6752 |
. . . . . . . . . 10
⊢ ((𝐹:(𝐴[,]𝐵)⟶ℝ ∧ ℝ ⊆
ℂ) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 55 | 53, 49, 54 | sylancl 586 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → 𝐹:(𝐴[,]𝐵)⟶ℂ) |
| 56 | | iccssre 13469 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) → (𝑋[,]𝑌) ⊆ ℝ) |
| 57 | 11, 12, 56 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (𝑋[,]𝑌) ⊆ ℝ) |
| 58 | | eqid 2737 |
. . . . . . . . . 10
⊢
(TopOpen‘ℂfld) =
(TopOpen‘ℂfld) |
| 59 | | tgioo4 24826 |
. . . . . . . . . 10
⊢
(topGen‘ran (,)) = ((TopOpen‘ℂfld)
↾t ℝ) |
| 60 | 58, 59 | dvres 25946 |
. . . . . . . . 9
⊢
(((ℝ ⊆ ℂ ∧ 𝐹:(𝐴[,]𝐵)⟶ℂ) ∧ ((𝐴[,]𝐵) ⊆ ℝ ∧ (𝑋[,]𝑌) ⊆ ℝ)) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝑋[,]𝑌)))) |
| 61 | 50, 55, 10, 57, 60 | syl22anc 839 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝑋[,]𝑌)))) |
| 62 | | iccntr 24843 |
. . . . . . . . . 10
⊢ ((𝑋 ∈ ℝ ∧ 𝑌 ∈ ℝ) →
((int‘(topGen‘ran (,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌)) |
| 63 | 11, 12, 62 | syl2anc 584 |
. . . . . . . . 9
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((int‘(topGen‘ran
(,)))‘(𝑋[,]𝑌)) = (𝑋(,)𝑌)) |
| 64 | 63 | reseq2d 5997 |
. . . . . . . 8
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D 𝐹) ↾ ((int‘(topGen‘ran
(,)))‘(𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ (𝑋(,)𝑌))) |
| 65 | 61, 64 | eqtrd 2777 |
. . . . . . 7
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = ((ℝ D 𝐹) ↾ (𝑋(,)𝑌))) |
| 66 | 65 | feq1d 6720 |
. . . . . 6
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((ℝ D (𝐹 ↾ (𝑋[,]𝑌))):(𝑋(,)𝑌)⟶𝑆 ↔ ((ℝ D 𝐹) ↾ (𝑋(,)𝑌)):(𝑋(,)𝑌)⟶𝑆)) |
| 67 | 48, 66 | mpbird 257 |
. . . . 5
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (ℝ D (𝐹 ↾ (𝑋[,]𝑌))):(𝑋(,)𝑌)⟶𝑆) |
| 68 | 67 | fdmd 6746 |
. . . 4
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → dom (ℝ D (𝐹 ↾ (𝑋[,]𝑌))) = (𝑋(,)𝑌)) |
| 69 | 11, 12, 13, 28, 68 | mvth 26031 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ∃𝑧 ∈ (𝑋(,)𝑌)((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌 − 𝑋))) |
| 70 | 67 | ffvelcdmda 7104 |
. . . . 5
⊢ ((((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) ∧ 𝑧 ∈ (𝑋(,)𝑌)) → ((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) ∈ 𝑆) |
| 71 | | eleq1 2829 |
. . . . 5
⊢
(((ℝ D (𝐹
↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌 − 𝑋)) → (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) ∈ 𝑆 ↔ ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌 − 𝑋)) ∈ 𝑆)) |
| 72 | 70, 71 | syl5ibcom 245 |
. . . 4
⊢ ((((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) ∧ 𝑧 ∈ (𝑋(,)𝑌)) → (((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌 − 𝑋)) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌 − 𝑋)) ∈ 𝑆)) |
| 73 | 72 | rexlimdva 3155 |
. . 3
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (∃𝑧 ∈ (𝑋(,)𝑌)((ℝ D (𝐹 ↾ (𝑋[,]𝑌)))‘𝑧) = ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌 − 𝑋)) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌 − 𝑋)) ∈ 𝑆)) |
| 74 | 69, 73 | mpd 15 |
. 2
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → ((((𝐹 ↾ (𝑋[,]𝑌))‘𝑌) − ((𝐹 ↾ (𝑋[,]𝑌))‘𝑋)) / (𝑌 − 𝑋)) ∈ 𝑆) |
| 75 | 22, 74 | eqeltrrd 2842 |
1
⊢ (((𝜑 ∧ (𝑋 ∈ (𝐴[,]𝐵) ∧ 𝑌 ∈ (𝐴[,]𝐵))) ∧ 𝑋 < 𝑌) → (((𝐹‘𝑌) − (𝐹‘𝑋)) / (𝑌 − 𝑋)) ∈ 𝑆) |